Open Access Open Access  Restricted Access Subscription Access

In Silico Screening of Traditional Herbal Medicine Derived Chemical Constituents for Possible Potential Inhibition against SARS-CoV-2


Affiliations
1 Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur, Kancheepuram – 603203, India
2 Department of Pharmacognosy and Phytochemistry, Parul Institute of Pharmacy & Research, Parul University, Waghodia – 391760, Gujarat, India
3 Dr. APJ Abdul Kalam Research Lab, SRM College of Pharmacy, SRMIST, Kattankulathur, Kancheepuram – 603203, Tamil Nadu, India
 

The outbreak of SARS-CoV-2 has initiated an exploration to find an efficient anti-viral agent. From the previous scientific studies of traditional herbal medicines like garlic, ginger, onion, turmeric, chilli, cinchona and pepper, 131 chemical constituents were identified. The filtered search of drug-like-molecules searched using Datawarrior resulted in 13 active constituents (apoquinine, catechin, cinchonidine, cinchonine, cuprediene, epicatechin, epiprocurcumenol, epiquinine, procurcumenol, quinidine, quinine, zedoaronediol, procurcumadiol) showed no mutagenic, carcinogenic or toxic properties. In silico study of these 13 compounds with the best binding affinity towards SARS-CoV-2 protease was carried out. The ligands were subjected to molecular docking using Autodock Vina. Epicatechin and apoquine showed highest binding affinity of -7 and -7.5kcal/mol while catechin and epicatechin showed four hydrogen bond interactions. It is interesting and worth noticing the interaction of GLU166 residue with the ligand in most of the constituents. The effectiveness of catechin and epicatechin as an antiviral agent could be tested against COVID-19.

Keywords

COVID-19, Catechin, Epicatechin, Data Warrior, Molecular Docking, Plant Products.
Font Size

User

Notifications
JOURNAL COVERS
  

  • WHO. Naming the coronavirus disease (COVID-19) and the virus that causes it [Internet]. [cited 2020 Apr 8]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virusthat-causes-it.
  • Liu RP, Ge J De, Zhong Y, Zheng Q, Sun R. Traditional Chinese medicine for treatment of COVID-19 based on literature mining of targeting cytokine storm. Chinese Traditional and Herbal Drugs. 2020; 51(5):1096–105.
  • Li Y, Liu X, Guo L, Li J, Zhong D, Zhang Y, Clarke M, Jin R. Traditional Chinese herbal medicine for treating novel coronavirus (COVID-19) pneumonia: Protocol for a systematic review and meta-Analysis. Systematic Reviews. 2020; 9(1). https://doi.org/10.1186/s13643-020-01343-4. PMid:32268923 PMCid:PMC7138957
  • Lerner K. SARS, MERS, and the Emergence of coronaviruses. Worldmark Global Health and Medicine Issues [Internet]. 2016. Available from:
  • Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020; 367(6485):1444–8. https://doi.org/10.1126/science.abb2762. PMid:32132184. PMC id:PMC7164635.
  • Ludwig S, Zarbock A. Coronaviruses and SARS-CoV2: A Brief Overview. Anesthesia and Analgesia. 2020. https://doi.org/10.1213/ANE.0000000000004845. PMid:32243297. PMCid:PMC7173023
  • Wang X, Xu W, Hu G, Xia S, Sun Z, Liu Z, et al. SARS-CoV2 infects T lymphocytes through its spike proteinmediated membrane fusion. Cellular and Molecular Immunology. 2020. https://doi.org/10.1038/s41423-020-0424-9
  • Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020. https://doi.org/10.1016/j.cell.2020.03.045. PMid:32275855 PMCid:PMC7144619
  • Kaladhar SVGKD. Effects of drugs on spike glycoprotein of sars-cov 2 in control of covid-2019. International Journal of Advanced Research. 2020; 8(3):918–24. https://doi.org/10.21474/IJAR01/10706
  • Law S, Leung AW, Xu C. Severe Acute Respiratory Syndrome (SARS) and Coronavirus disease-2019 (COVID-19): From causes to preventions in Hong Kong. International Journal of Infectious Diseases. 2020; 94:156–63. https://doi.org/10.1016/j.ijid.2020.03.059. PMid:32251790 PMCid:PMC7195109
  • Giron CC, Laaksonen A, Silva FLB da. pbioRxiv. 2020; 2020.04.05.026377.
  • Rut W, Groborz K, Zhang L, Sun X, Zmudzinski M, Hilgenfeld R, et al. Substrate specificity profiling of SARS-CoV-2 Mpro protease provides basis for anti-COVID-19 drug design. bioRxiv. 2020. https://doi.org/10.1101/2020.03.07.981928. PMid:32014497
  • Rabaan AA, Al-ahmed SH, Sah R, Tiwari R, Iqbal M, Patel SK, et al. SARS-CoV-2/COVID-19 and advances in developing potential therapeutics and vaccines to counter this emerging pandemic virus - A Review. Preprints. 2020; 4:1–46. https://doi.org/10.20944/ preprints202004.0075.v1
  • Bharath EN, Manjula SN, Vijaychand A. In silico drug design-tool for overcoming the innovation deficit in the drug discovery process. International Journal of Pharmacy and Pharmaceutical Sciences. 2011; 3(2):8–12.
  • Ang L, Lee HW, Choi JY, Zhang J, Soo Lee M. Herbal medicine and pattern identification for treating COVID-19: A rapid review of guidelines. Integrative Medicine Research. 2020; 9(2):100407. https://doi.org/10.1016/j.imr.2020.100407. PMid:32289016 PMCid: PMC7104236
  • Ferner RE, Aronson JK. Chloroquine and hydroxychloroquine in covid-19. The BMJ. 2020; 369. https://doi.org/10.1136/bmj.m1432. PMid:32269046
  • Atallah P, Wagener KB, Schulz MD. ADMET: The future revealed. Macromolecules. 2013. https://doi.org/10.1002/chin.201336195
  • López-López E, Naveja JJ, Medina-Franco JL. DataWarrior: An evaluation of the open-source drug discovery tool. Expert Opinion on Drug Discovery. 2019. https://doi.org/10.1080/17460441.2019.1581170.
  • PMid:30806519
  • Trott O, Olson AJ. Autodock vina: Improving the speed and accuracy of docking. Journal of Computational Chemistry. 2019; 31(2):455–61.
  • Lindstrom W, Morris GM, Weber C, Huey R. Using AutoDock for virtual screening. The Scripps Research Institue [Internet]. 2006.
  • Lin LT, Hsu WC, Lin CC. Antiviral natural products and herbal medicines. Journal of Traditional and Complementary Medicine. 2014; 4(1):24–35. https://doi.org/10.4103/2225-4110.124335. PMid:24872930 PMCid:PMC4032839
  • Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, et al. Structure of Mpro from COVID-19 virus and discovery of its inhibitors. Nature. 2020. https://doi.org/10.1101/2020.02.26.964882
  • Lohidashan K, Rajan M, Ganesh A, Paul M, Jerin J. Pass and Swiss ADME collaborated in silico docking approach to the synthesis of certain pyrazoline spacer compounds for dihydrofolate reductase inhibition and antimalarial activity. Bangladesh Journal of Pharmacology. 2018; 13(1):23–9. https://doi.org/10.3329/bjp.v13i1.33625
  • Contrera JF. Validation of Toxtree and SciQSAR in silico predictive software using a publicly available benchmark mutagenicity database and their applicability for the qualification of impurities in pharmaceuticals. Regulatory Toxicology and Pharmacology. 2013; 67(2):285–93. https://doi.org/10.1016/j.yrtph.2013.08.008. PMid: 23969001

Abstract Views: 8

PDF Views: 9




  • In Silico Screening of Traditional Herbal Medicine Derived Chemical Constituents for Possible Potential Inhibition against SARS-CoV-2

Abstract Views: 8  |  PDF Views: 9

Authors

R. Srimathi
Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur, Kancheepuram – 603203, India
Muthu K. Mohan Maruga Raja
Department of Pharmacognosy and Phytochemistry, Parul Institute of Pharmacy & Research, Parul University, Waghodia – 391760, Gujarat, India
Muthu K. Kathiravan
Dr. APJ Abdul Kalam Research Lab, SRM College of Pharmacy, SRMIST, Kattankulathur, Kancheepuram – 603203, Tamil Nadu, India

Abstract


The outbreak of SARS-CoV-2 has initiated an exploration to find an efficient anti-viral agent. From the previous scientific studies of traditional herbal medicines like garlic, ginger, onion, turmeric, chilli, cinchona and pepper, 131 chemical constituents were identified. The filtered search of drug-like-molecules searched using Datawarrior resulted in 13 active constituents (apoquinine, catechin, cinchonidine, cinchonine, cuprediene, epicatechin, epiprocurcumenol, epiquinine, procurcumenol, quinidine, quinine, zedoaronediol, procurcumadiol) showed no mutagenic, carcinogenic or toxic properties. In silico study of these 13 compounds with the best binding affinity towards SARS-CoV-2 protease was carried out. The ligands were subjected to molecular docking using Autodock Vina. Epicatechin and apoquine showed highest binding affinity of -7 and -7.5kcal/mol while catechin and epicatechin showed four hydrogen bond interactions. It is interesting and worth noticing the interaction of GLU166 residue with the ligand in most of the constituents. The effectiveness of catechin and epicatechin as an antiviral agent could be tested against COVID-19.

Keywords


COVID-19, Catechin, Epicatechin, Data Warrior, Molecular Docking, Plant Products.

References





DOI: https://doi.org/10.18311/jnr%2F2020%2F25278