Open Access Open Access  Restricted Access Subscription Access

Non-Thermal Treatments for Food Preservation


Affiliations
1 Department of Agroindustrial Engineering, Innovation and Development of Food Processes (DESINPA) - Universidad de Sucre, Carrera. 28 #5-267, Puerta Roja, Sincelejo, Colombia
 

Objectives: The purpose of this work was to review the recent advances in the non-thermal treatments for food preservation such as ultrasound, microwave, ultraviolet irradiation, electric field, electromagnetic field, and high hydrostatic pressure. Methods/Statistical Analysis: In order to elaborate this review, it was performed the following procedure: First, by the use of databases available, the principal findings published related to the non-thermal treatments used to preserve specific food product were chosen. Second, the principal characteristics such as conditions of operation, effects on mechanical and physicochemical properties, and relevant results were highlighted from each study. Third, a short description of each study was realized. Findings: In this review, the non-thermal treatments can generate in food minimal alterations of the physicochemical and mechanical properties, stimulate the production of edible microorganism, generate localized heating conserving its nutritional quality, promote the enzymatic inactivation, and have antimicrobial effects. Application/Improvements: Non-thermal treatments used for sterilization process in food can implement the use of others technologies such as example the nanostructured materials used in the fabrication of food packaging, the use of different types of food packaging i.e., active, intelligent, biodegradable, the application of treatments such as the use of nzyme or biopreservation, and the incorporation of bio-compounds.
User

  • Mathavi V, Sujatha G, Ramya S., Devi B. New trends in food processing, International Journal of Advances in Engineering and Technology. 2013; 5(2):176–87.
  • Barbosa-Canovas G, Fernandez-Molina J, Alzamora S, Tapia M, Lopez-Malo A, Chanes J. Handling and preservation of fruits and vegetables by combined methods for rural areas, Food and Agriculture Organization of the United Nations. 2003; 149:19–37.
  • McElhatton A, Marshall RJ. Food safety a practical and case study approach, Integrating Food Science and Engineering Knowledge in to the Food Chain. 2007.
  • Borata AB. Nuevas tecnologías de conservación de ‑alimentos. A. Madrid Vicente Ediciones; 2010. p. 1−7.
  • Balasubramaniam VM, Martínez-Monteagudo SI, Gupta R. Principles and application of high pressure– based technologies in the food industry, Annual Review of Food Science and Technology. 2015; 6(1):435–62. https://doi.org/10.1146/annurev-food-022814-015539 PMid: 25747234.
  • Fuentes L, Acevedo D, Gélvez VM. Efecto del ultrasonido y campos magnéticos en la carne de lomo atún (Thunnus albacares), Information Tecnology. 2016; 27(2):21– 30. https://doi.org/10.4067/S0718-07642016000200004.
  • Polo-CorralesL, Ramirez-VickJ, Feria-DiazJJ. Recentadvances in biophysical stimulation of MSC for bone regeneration, Indian Journal of Science and Technology. 2018; 11(15):1–41. https://doi.org/10.17485/ijst/2018/v11i15/121405.
  • Birmpa A, Sfika V, Vantarakis A. Ultraviolet light and ultrasound as non-thermal treatments for the inactivation of microorganisms in fresh ready-to-eat foods, International Journal of Food Microbiology. 2013; 167(1):96–102. https://doi.org/10.1016/j.ijfoodmicro.2013.06.005. PMid: 23827815.
  • Hulsmans A, Joris K, Lambert N, Rediers H, Declerck P, Delaedt Y. Evaluation of process parameters of ultrasonic treatment of bacterial suspensions in pilot scale water disinfection system, Ultrasonics Sonochemistry. 2010; 17:1004–09. https://doi.org/10.1016/j.ultsonch.2009.10.013. PMid: 19962336.
  • Romero Barragán PE, Gélvez Ordó-ez VM. Bistua. Efectos de los campos magnéticos y el Ultrasonido sobre la Calidad microbiológica y las propiedades funcionales en una Emulsion de carne de bufalo (Bubalusbubalis), Bistua: Revista de la Facultad de Ciencias Básicas. 2013; 11(1):67–76.
  • Gelvez Ordo-ez VM, Campo-Vera Y, Villada-Castillo DC. Efecto del ultrasonido en las propiedades físicas de la leche entera, Bistua Rev la Fac Ciencias Básicas. 2015; 13(2):79–90.
  • Forghani F, Oh DH. Hurdle. Enhancement of slightly acidic electrolyzed water antimicrobial efficacy on Chinese cabbage, lettuce, sesame leaf and spinach using ultrasonication and water wash, Food Microbiology. 2013; 36(1):40–5. https://doi.org/10.1016/j.fm.2013.04.002. PMid: 23764218.
  • Sagong HG, Cheon HL, Kim SO, Lee SY, Park KH, Chung MS. Combined effects of ultrasound and surfactants to reduce Bacillus cereus spores on lettuce and carrots, International Journal of Food Microbiology. 2013; 160(3):367–72. https://doi.org/10.1016/j.ijfoodmicro.2012.10.014. PMid: 23290247.
  • Campo Y, Gélvez V. Efecto De La Termosonicación Sobre Las Propiedades Fisicoquímicas Del Hongo Comestible (Pleurotusostreatus) Fresco E Empacado Al Vacio, Revista La Fac Cienc Basicas. 2011; 9(2):55–63.
  • Vollmer M. Physics of the microwave oven, Physics Education. 2003; 39(1):74–81. https://doi.org/10.1088/0031-9120/39/1/006.
  • Tang J, Chow Ting Chan TV. Microwave and radio frequency in sterilization and pasteurization applications. In: Heat Transfer in Food Processing; 2007. p. 101–57.
  • Barbosa-Cánovas GV, Medina-Meza I, Candogan K, Bermúdez-Aguirre D. Advanced retorting, Microwave Assisted Thermal Sterilization (MATS), and Pressure Assisted Thermal Sterilization (PATS) to process meat products, Meat Science. 2014: 98(3):420–34. https://doi.org/10.1016/j.meat s c i.2014.06.027. PMid: 25060584
  • Datta A, Anantheswaran R. Handbook of microwave technology for food applications. First edit. New York: Marcel Dekker Press; 2001. p. 536. https://doi.org/10.1201/9781482270778.
  • Zhu X, Yang Y, Duan Z. Research progress on the effect of microwave sterilization on agricultural products quality, IOP Conference Series: Earth and Environmental Science. 2018; 113:1–5. https://doi.org/10.1088/1755-1315/113/1/012096.
  • Kalla AM, Devaraju R. Microwave energy and its application in food industry: A review, Asian Journal of Dairy and Food Research. 2017; 36:37–44. https://doi.org/10.18805/ajdfr.v0iOF.7303.
  • Xu XL, Shi RC. Effect of Microwave Treatment on the Sterilization Effect and Quality of Mango Puree, Chinese Journal of Tropical Crops. 2017; 38(3):572–9.
  • Yu XL, Shi RC, Wang L. Effect of microwave treatment on the quality of Carica Papaya L. puree, Food Science and Technology. 2016; (5):64–70.
  • Xiao N, He JM, Li T. Micro-wave Sterilization of Sanhuali Fruit Cake, Modern Food Scienceand Technology. 2013; 29(5):1093–5.
  • Wu Z, Zhang K, Zhao GH. Microwave Sterilization of Wet Noodles with Pumpkin Extending Shelf-life effectively, Food Ferment Technology. 2010; 46(6):22–5.
  • Zhang H, Bhunia K, Kuang P. Effects of oxygen and water vapor transmission rates of polymeric pouches on oxidative changes of microwave-sterilized mashed potato, Food Bioprocess Technology. 2016; 9(2):1–11. https://doi.org/10.1007/s11947-015-1628-3.
  • Biao Q, Chao Q, Xiao-yu C, Wen-hua C, Shun-liang Z, Shu-yang XIE. Effect of microwave sterilization on quality properties of Stewed Pork Liver, Food and Science. 2013; 34(1):69–72.
  • Xu YY, Li KJ, Qiu Y. Process optimization of microwave sterilization for Aspergillus niger from rice, Science and Technology of Food Industry. 2014; 35(22):245–8.
  • Cinquanta L, Albanese D, Cuccurullo G, Di Matteo M. Effect on orange juice of batch pasteurization in an improved pilot-scale microwave oven, Journal of Food and Science. 2010; 75(1):46– 50. https://doi.org/10.1111/j.1750-3841.2009.01412.x. PMid: 20492165.
  • Velásquez ÁM, Sánchez A, León R. Utilización de microondas en el tratamiento de jugo de mango, Revista Lasallista de Investigación. 2008; 5(2):13–9.
  • De La Vega-Miranda B, Santiesteban-López NA, LópezMalo A, Sosa-Morales ME. Inactivation of Salmonella typhimurium in fresh vegetables using water-assisted microwave heating, Food Control. 2012; 26(1):19–22. https://doi.org/10.1016/j.foodcont.2012.01.002.
  • Jamshidi A, Seifi HA, Kooshan M. The effect of short-time microwave exposures on Escherichia coli O157: H7 inoculated onto beef slices, African Journal of Microbiology Research. 2010; 4(22):2371–74.
  • Redondo D, Venturini ME, Oria R, Arias E. Inhibitory effect of microwaved thinned nectarine extracts on polyphenol oxidase activity, Food Chemistry. 2016; 197:603–10. https://doi.org/10.1016/j.foodchem.2015.11.009. PMid:26616994.
  • Choudhary R, Bandla S. Ultraviolet pasteurization for food industry, International Journal of Food Science and Nutrition Engineering. 2012; 2(1):12–5. https://doi.org/10.5923/j.food.20120201.03.
  • Ultraviolet radiation for the processing and treatment of food. Date accessed: 2000. https://www.law.cornell.edu/cfr/text/21/179.39.
  • Nimitkeatkai H, Kulthip J. Effect of sequential UV-C irradiation on microbial reduction and quality of freshcut dragon fruit, International Food Research Journal. 2016; 23(4):1818–22.
  • Bank HL, Schmehl JL, Dratch RJ. Bacteriocidal effectiveness of modulated UV light, Applied and Environmental Microbiology. 1990; 56:3888–89. PMid: 2128016, PMCid: PMC185087.
  • Kalyani B, Manjula K. Review article food irradiation - Technology and application, International Journal of Current Microbiology and Applied Sciences. 2014; 3(4):549–55.
  • Koutchma T. UV light for processing foods, Ozone: Science and Engineering. 2008; 30(1):93–8. https://doi.org/10.1080/01919510701816346.
  • Manzocco L, Da Pieve S, Maifreni M. Impact of UV-C light on safety and quality of fresh-cut melon, Innovative Food Science and Emerging Technologies. 2011; 12(1):13–7. https://doi.org/10.1016/j.ifset.2010.11.006.
  • Holck A, Liland K, Drømtorp S, Carlehög M, McLEOD A. ComparisonofUV-CandpulsedUVlighttreatmentsforreduction of salmonella, Listeria Monocytogenes, and Enterohemorrhagic Escherichia coli on eggs, Journal of Food Protection. 2018; 81(1):1–31. https://doi.org/10.4315/0362-028X.JFP-17-128. PMid: 29220202.
  • Ignat A, Manzocco L, Maifreni M, Bartolomeoli I, Nicoli MC. Surface decontamination of fresh-cut apple by pulsed light: Effects on structure, colour and sensory properties, Postharvest Biology and Technology. 2014; 91(2–3):122–7. https://doi.org/10.1016/j.postharvbio. 2014.01.005.
  • Márquez Villacorta L, Pretell Vásquez C. Irradiación UV-C en frutas tropicales mínimamente procesadas, Scientia Agropecuaria. 2013; 4(2):147–61. https://doi.org/10.17268/sci.agropecu.2013.03.01.
  • Adhikari A, Syamaladevi RM, Killinger K, Sablani SS. Ultraviolet-C light inactivation of Escherichia coli O157: H7 and Listeria monocytogenes on organic fruit surfaces, International Journal of Food Microbiology. 2015; 210:136–142. https://doi.org/10.1016/j.ijfoodmicro. 2015.06.018. PMid: 26122954.
  • Raybaudi-Massilia R, Calderón-Gabaldón MI, MosquedaMelgar J, Tapia MS. Inactivation of Salmonella enterica ser. Poona and Listeria monocytogenes on fresh-cut “Maradol” red papaya (Carica papaya L) treated with UV-C light and malic acid, Journal für Verbraucherschutz und Lebensmittelsicherheit. 2013; 8(1–2):37–44.
  • Zhao W, Yang RJ, Zhang HQ. Recent advances in the action of pulsed electric fields on enzymes and food component proteins, Trends in Food Science and Technology. 2012; 27(2):83–96. https://doi.org/10.1016/j.tifs.2012.05.007.
  • Zimmermann U. Electrical breakdown, electropermeabilization and electrofusion, Reviews of Physiology, Biochemistry and Pharmacology. 1986; 105:176–256. https://doi.org/10.1007/BFb0034499. PMid: 3541139.
  • Ignat A, Manzocco L, Brunton NP, Nicoli MC, Lyng JG. The effect of pulsed electric field pre-treatments prior to deep-fat frying on quality aspects of potato fries, Innovative Food Science and Emerging Technologies. 2015; 29:65–9. https://doi.org/10.1016/j.ifset.2014.07.003.
  • Leong SY, Richter LK, Knorr D, Oey I. Feasibility of using pulsed electric field processing to inactivate enzymes and reduce the cutting force of carrot (Daucus carota var. Nantes), Innovative Food Science and Emerging Technologies. 2014; 26:159–67. https://doi.org/10.1016/j.ifset.2014.04.004.
  • Castorena-Garciıa JH, Martınez-Montes FJ, Robles-Lopez MR, Welti-Chanes JS, Hernandez-Sanchez H, Roblesdela-Torre RR. Effect of Electric Fields on the Activity of Polyphenol Oxidases, Revista Mexicana de Ingeniería Química. 2013; 12(3):391–400.
  • Ruan R, Deng S, Cheng Y. Concentrated High Intensity Electric Field (CHIEF) pasteurization of milk, Midwest Dairy Foods Res Cent. 2010; 183–8.
  • Faridnia F, Burritt JD, Bremer P, Oey I. Innovative approach to determine the effect of pulsed electric fields on the microstructure of whole potato tubers: Use of cell viability, microscopic images and ionic leakage measurements, Food Research International. 2015; 77(3):556–64. https://doi.org/10.1016/j.foodres.2015.08.028.
  • Fauster T, Schlossnikl D, Rath F, Ostermeier R, Teufel F, Toepfl F. Impact of Pulsed Electric Field (PEF) pretreatment on process performance of industrial French fries production, Journal of Food Engineering. 2018; 235:16–22. https://doi.org/10.1016/j.jfoodeng.2018.04.023.
  • Liang Z, Mittal GS, Griffiths MW. Inactivation of Salmonella typhimurium in orange juice containing antimicrobial agents by pulsed electric field, Journal of Food Protection. 2002; 65(65):1081−87. https://doi.org/10.4315/0362-028X-65.7.1081. PMid: 12117238.
  • Jin TZ, Guo M, Yang R. Combination of pulsed electric field processing and antimicrobial bottle for extending microbiological shelf-life of pomegranate juice, Innovative Food Science and Emerging Technologies. 2014; 26:153–8.
  • Nafziger J, Desjobert H, Benamar B, Guillosson J., Adolphe M. DNA mutations and 50 Hz electromagnetic fields, Bioelectrochemistry Bioenergy. 1993; 30:133–41. https://doi.org/10.1016/0302-4598(93)80071-2.
  • Goodman R, Shirley-Henderson A. Transcription and translation in cells exposed to extremely low frequency electromagnetic fields, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1991; 320(3):335–55. https://doi.org/10.1016/00220728(91)85651-5.
  • D’Inzeo G, Pisa S, Tarricone L. Ionic channel gating under electromagnetic exposure: A stochastic model, Bioelectrochemistry Bioenergy. 1993; 29(3):289–304. https://doi.org/10.1016/0302-4598(93)85004-D.
  • Yadollahpour A, Jalilifa M, Rashidi S. Antimicrobial effects of electromagnetic fields: A review of current techniques and mechanisms of action, Journal of Pure and Applied Microbiology. 2014; 8(5):4031–43.
  • Novickij V, Grainys A, Lastauskienė E, Kananavičiūtė R, Pamedytytė D, Kalėdienė L. Pulsed electromagnetic field assisted in vitro electroporation: A pilot study, Scientific Reports. 2016; 6(1):33537. https://doi.org/10.1038/srep33537. PMid: 27634482, PMCid: PMC5025861.
  • Gélvez VM, Hernández S, Campo-Vera Y. Inactivación de bacterias patógenas por efecto de campos magnéticos, Agron Colomb. 2016; 34:1462–4.
  • Liboff A, Williams T, Strong DM, Wistar R. Time varying magnetic fields: Effect on DNA synthesise, Science (80- ). 1984; 223(4638):818–20.
  • Pothakamury U, Barbosa-Canovas G, Swanson BG. Magnetic-field inactivation of microorganisms and generation of biological changes, Food Technology. 1993; 47(12):85–93.
  • Haile M, Zhongli P, Mengxiang G, Luo L. International Journal of Food Efficacy in Microbial Sterilization of Pulsed Magnetic Field Treatment Efficacy in Microbial Sterilization of Pulsed Magnetic Field Treatment, International Journal of Food Engineering. 2008; 4(4):1– 14. https://doi.org/10.2202/1556-3758.1177.
  • Mohamed GM, Mohamed ST, Abd-Alaah AA, Kassem AMA, Suliman AAM. Effect of incubating egg exposure to magnetic field on the biophysical blood properties of newly-hatched chicks, Pakistan Journal of Pharmaceutical Sciences. 2015; 28(5):1865–70. PMid: 26525029.
  • Shafey TM, Aljumaah RS, Swillam SA, Al-mufarrej SI, Al-abdullatif AA, Ghannam MM. Effects of short term exposure of eggs to magnetic field before incubation on hatchability and post-hatch performance of meat chickens, Saudi Journal of Biological Sciences. 2011; 18(4):381– 6. https://doi.org/10.1016/j.sjbs.2011.06.004. PMid: 23961150, PMCid: PMC3730795.
  • Tarasewicz Z, Szczerbinska D, Majewska D, Danczak A, Ligocki M, Wolska A. The effect of magnetic field on hatchability of Japanese quail eggs, Czech Journal of Animal Science. 2006; 51(8):355– 60. https://doi.org/10.17221/3951-CJAS.
  • Mohtasham P, Keshavarz-moore E, Kale I, Keshavarz T. Application of magnetic field for improvement of microbial productivity, Chemical Engineering Transactions. 2016; 49:43–8.
  • Guzmán TM, Anaya-Villalpanda M, Mesa-Mari-o Y. Activación de cultivos probióticos tratados con campo magnético de frecuencia extremadamente baja, Tecnol Quim. 2016; 36(1):106–16.
  • Jean-felix K, Ivanovich KG. Intensification of production yogurt technology with activation of the leaven with the electromagnetic field of low frequency, Technology Science. 2015; 108(4):1–11.
  • Ali HI, Al-Hilphy ARS, Al-Darwash AK. The effect of magnetic field treatment on the characteristics and yield of Iraqi local white cheese, Journal of Agriculture and Veterinary Science. 2015; 8(9):2319–72.
  • Chen D, Pang X, Zhao J, Gao L, Liao X, Wu J. Comparing the effects of high hydrostatic pressure and high temperature short time on papaya beverage, Innovative Food Science and Emerging Technologies. 2015; 32:16–28. https://doi.org/10.1016/j.ifset.2015.09.018.
  • Shen J, Gou Q, Zhang Z, Wang M. Effects of high hydrostatic pressure on the quality and shelf-life of jujube (Ziziphusjujuba Mill.) pulp, Innovative Food Science and Emerging Technologies. 2016; 36:166–72. https://doi.org/10.1016/j.ifset.2016.06.019.
  • Scolari G, Zacconi C, Busconi M, Lambri M. Effect of the combined treatments of high hydrostatic pressure and temperature on Zygosaccharomyces bailii and Listeria monocytogenes in smoothies, Food Control. 2015; 47:166– 74. https://doi.org/10.1016/j.foodcont.2014.07.006.
  • Mukhopadhyay S, Sokorai K, Ukuku D, Fan X, Juneja V, Sites J, et al. Inactivation of Salmonella enterica and Listeria monocytogenes in cantaloupe puree by high hydrostatic pressure with/without added ascorbic acid, International Journal of Food Microbiology. 2016; 235:77–84. https://doi.org/10.1016/j.ijfoodmicro.2016.07.007. PMid: 27441819.
  • Toledo del Arbol J, Perez Pulido R, La Storia A, Grande Burgos MJ, Lucas R, Ercolini D, et al. Microbial diversity in pitted sweet cherries (Prunus avium L.) as affected by High-Hydrostatic Pressure treatment, Food Research International. 2016; 89:790–6. https://doi.org/10.1016/j.foodres.2016.10.014. PMid: 28460980.
  • Jacobo-Velázquez DA, Castellanos-Dohnal G, CaballeroMata P, Hernández-Brenes C. Cambios bioquímicos durante el almacenamiento de puré de aguacate adicionado con antioxidantes naturales y procesado con alta presión hidrostática, CYTA – Journal of Food. 2013; 11(4):379–91.
  • Sánchez J, De Miguel C, Ramírez MR, Delgado J, Franco MN, Martín D. Efecto de las altas presiones hidrostáticas respecto a la pasteurización térmica en los aspectos microbiológicos, sensoriales y estabilidad oxidativa de un paté de aceituna, Grasas y Aceites. 2012; 63(1):100–8. https://doi.org/10.3989/gya.071211.
  • Tian Y, Li D, Zhao J, Xu X, Jin Z. Effect of High Hydrostatic Pressure (HHP) on slowly digestible properties of rice starches, Food Chemistry. 2014; 152:225–9. https://doi.org/10.1016/j.foodchem.2013.11.162. PMid: 24444930.
  • Álvarez-Virrueta DR, García-López EG, Montalvo-González E, Ramírez JA, Mata-Montes-De-Oca M, Tovar-Gómez B. Effect of high hydrostatic pressure on postharvest physiology of the “ataulfo” mango, CYTA – Journal of Food. 2012; 10(3):173– 81. https://doi.org/10.1080/19476337.2011.603843.
  • Giménez B, Graiver N, Califano A, Zaritzky N. Physicochemical characteristics and quality parameters of a beef product subjected to chemical preservatives and high hydrostatic pressure, Meat Science. 2015; 100:179– 88. https://doi.org/10.1016/j.meatsci.2014.10.017. PMid: 25460123.
  • Montiel R, Martín-Cabrejas I, Peirotén Á, Medina M. Reuterin, lactoperoxidase, lactoferrin and high hydrostatic pressure treatments on the characteristics of cooked ham, Innovative Food Science and Emerging Technologies. 2016; 35:111–8. https://doi.org/10.1016/j.ifset.2016.04.013.
  • Jofré A, Aymerich T, Grèbol N, Garriga M. Efficiency of high hydrostatic pressure at 600 MPa against food-borne microorganisms by challenge tests on convenience meat products, LWT - Food Science Technology. 2009; 42(5):924–8. https://doi.org/10.1016/j.lwt.2008.12.001.
  • Al-Nehlawi A, Guri S, Guamis B, Saldo J. Synergistic effect of carbon dioxide atmospheres and high hydrostatic pressure to reduce spoilage bacteria on poultry sausages, LWT - Food Science Technology. 2014; 58(2):404–11. https://doi.org/10.1016/j.lwt.2014.03.041.
  • Yao J, Zhou B, Wang R, Wang T, Hu X, Liao X. Inactivation of staphylococcus aureus by high hydrostatic pressure in saline solution and meat slurry with different initial inoculum levels, Food Bioprod Process. 2015; 94(17):592–600. https://doi.org/10.1016/j.fbp.2014.06.005.
  • Zhang L, Qu M, Yao J, Wang P, Liao X, Hu X, et al. Effect of high hydrostatic pressure on the viability of Streptococcus thermophilus bacteriophages isolated from cheese, Innovative Food Science and Emerging Technologies. 2015; 29:113–8. https://doi.org/10.1016/j.ifset.2015.02.001.
  • Ozturk M, Govindasamy-Lucey S, Jaeggi JJ, Houck K, Johnson ME, Lucey JA. Effect of various highpressure treatments on the properties of reduced-fat Cheddar cheese, Journal of Dairy Science. 2013; 96(11):6792–806. https://doi.org/10.3168/jds.20126483. PMid: 24054280.
  • Bover-Cid S, Belletti N, Aymerich T, Garriga M. Modelling the impact of water activity and fat content of dry-cured ham on the reduction of Salmonella enterica by high pressure processing, Meat Science. 2017; 123:120–5. https://doi.org/10.1016/j.meatsci.2016.09.014. PMid: 27710771.
  • Hayes JE, Raines CR, DePasquale DA, Cutter CN. Consumer acceptability of High Hydrostatic Pressure (HHP) - treated ground beef patties, LWT - Food Science Technology. 2014; 56(1):207–10. https://doi.org/10.1016/j.lwt.2013.11.014.
  • Lorido L, Estévez M, Ventanas J, Ventanas S. Comparative study between Serrano and Iberian dry-cured hams in relation to the application of high hydrostatic pressure and temporal sensory perceptions, LWT - Food Science Technology. 2015; 64(2):1234–42. https://doi.org/10.1016/j.lwt.2015.07.029.
  • Omer MK, Prieto B, Rendueles E, AlvarezOrdo-ez A, Lunde K, Alvseike O. Microbiological, physicochemical and sensory parameters of dry fermented sausages manufactured with high hydrostatic pressure processed raw meat, Meat Science. 2015; 108:115–9. https://doi.org/10.1016/j.meatsci.2015.05.002. PMid: 26093224.
  • Szerman N, Barrio Y, Schroeder B, Martinez P, Sancho AM, Sanow C. Effect of high hydrostatic pressure treatments on physicochemical properties, microbial quality and sensory attributes of beef carpaccio, Procedia Food Science. 2011; 1:854–61. https://doi.org/10.1016/j.profoo. 2011.09.129.

Abstract Views: 230

PDF Views: 0




  • Non-Thermal Treatments for Food Preservation

Abstract Views: 230  |  PDF Views: 0

Authors

Saúl David Buelvas-Caro
Department of Agroindustrial Engineering, Innovation and Development of Food Processes (DESINPA) - Universidad de Sucre, Carrera. 28 #5-267, Puerta Roja, Sincelejo, Colombia
María Camila Assia-Ortiz
Department of Agroindustrial Engineering, Innovation and Development of Food Processes (DESINPA) - Universidad de Sucre, Carrera. 28 #5-267, Puerta Roja, Sincelejo, Colombia
Liliana Polo-Corrales
Department of Agroindustrial Engineering, Innovation and Development of Food Processes (DESINPA) - Universidad de Sucre, Carrera. 28 #5-267, Puerta Roja, Sincelejo, Colombia

Abstract


Objectives: The purpose of this work was to review the recent advances in the non-thermal treatments for food preservation such as ultrasound, microwave, ultraviolet irradiation, electric field, electromagnetic field, and high hydrostatic pressure. Methods/Statistical Analysis: In order to elaborate this review, it was performed the following procedure: First, by the use of databases available, the principal findings published related to the non-thermal treatments used to preserve specific food product were chosen. Second, the principal characteristics such as conditions of operation, effects on mechanical and physicochemical properties, and relevant results were highlighted from each study. Third, a short description of each study was realized. Findings: In this review, the non-thermal treatments can generate in food minimal alterations of the physicochemical and mechanical properties, stimulate the production of edible microorganism, generate localized heating conserving its nutritional quality, promote the enzymatic inactivation, and have antimicrobial effects. Application/Improvements: Non-thermal treatments used for sterilization process in food can implement the use of others technologies such as example the nanostructured materials used in the fabrication of food packaging, the use of different types of food packaging i.e., active, intelligent, biodegradable, the application of treatments such as the use of nzyme or biopreservation, and the incorporation of bio-compounds.

References





DOI: https://doi.org/10.17485/ijst%2F2018%2Fv11i43%2F132593