Open Access Open Access  Restricted Access Subscription Access

The Proviral Load of the Bovine Leukosis Virus is Associated with the Polymorphisms of the BoLA-DRB3 Gene in the HartonDel Valle Breed


Affiliations
1 University of Sucre, Sincelejo, Colombia
 

Objective: To associate the proviral load (PVL) of the bovine leukosis virus found in the Harton del Valle (HV) breed with the alleles of the BoLA-DRB3 gene. Methods: In 100 HV animals, the PVL was evaluated using a real-time quantitative PCR and a TaqMan probe; the animals were classified according to their PVL in high proviral load (HPVL) or low proviral load (HPVL). Additionally, the animals were genotyped using the PCR-SBT method. The allele frequencies were estimated. Alleles were associated with HPVL (susceptible, S), LPVL (resistant, R) or neutral (N) using the Odds ratio (OR) statistic and the presence of common amino acids in the R and S alleles were determined. Findings: A total of 22 alleles were found, the *1101 was the most frequent. High-frequency alleles accumulate 71.9%. The PVL mean was 129740 copies/μg of DNA. Seven alleles were associated with PVL, alleles *1002, *1601 and *1701 with HPVL (S) and alleles *0902, *1101, *20012 and *2703 with LPVL (R). The PVL of the alleles S and R was 516966 and 75074 copies/μg of DNA respectively. The allelic frequency R and genotype RR accumulated was higher than that of the alleles and genotypes S. The amino acid Glu located in positions 70 of the DRβ peptide chain was common in the R alleles. Application/Improvements: The resistance to the PVL (LPVL) has particularities in each breed since the alleles according to the literature reports are not the same. These results can be used in selection programs in favor of the genes categorized here as R, and thus, decrease the infection rate of the virus.
User

  • Driessche BV, Rodari A, Delacourt N, Fauquenoy S, Vanhulle C, Burny A. Characterization of new RNA polymerase III and RNA polymerase II transcriptional promoters in the Bovine Leukemia Virus genome. Scientific Reports. 2016; 6:31125. https://doi.org/10.1038/srep31125 PMid:27545598 PMCid:PMC4992882
  • EFSA Panel on Animal Health and Welfare. Enzootic bovine leukosis. EFSA Journal. 2015; 13(7):4188. https:// doi.org/10.2903/j.efsa.2015.4188
  • van den Heuvel M, Portetelle D, Jefferson B, Jacobs RM. Adaptation of a sandwich enzyme-linked immunosorbent assay to determine the concentration of bovine leukemia virus p24 and optimal conditions for p24 expression in short-term cultures of peripheral blood mononuclear cells. Journal of Virological Methods. 2003; 111(1):61-7. https:// doi.org/10.1016/S0166-0934(03)00148-4
  • Gillet NA, Hamaidia M, Brogniez A de, Gutierrez G, Renotte N, Reichert M. Bovine Leukemia Virus Small Noncoding RNAs Are Functional Elements That Regulate Replication and Contribute to Oncogenesis In Vivo. PLOS Pathogens. 2016; 12(4):e1005588. https://doi.org/10.1371/journal.ppat.1005588 PMid:27123579 PMCid:PMC4849745
  • Jimba M, Takeshima S, Murakami H, Kohara J, Kobayashi N, Matsuhashi T. BLV-CoCoMo-qPCR: a useful tool for evaluating bovine leukemia virus infection status. BMC Veterinary Research. 2012; 8(1):167. https:// doi.org/10.1186/1746-6148-8-167 PMid:22995575 PMCid:PMC3489618
  • Sandez N, Ilieva D, Sizov I, Rusenova N, Iliev E. Prevalence of enzootic bovine leukosis in the Republic of Bulgaria in 1977-2004. VeterinarskiArhiv. 2006; 76(3):263-8.
  • Erskine RJ, Bartlett PC, Byrem TM, Render CL, Febvay C, Houseman JT. Herd-level determinants of bovine leukaemia virus prevalence in dairy farms. Journal of Dairy Research. 2012; 79(4):445-50. https://doi.org/10.1017/S0022029912000520 PMid:22963749
  • Norby B, Bartlett P, Byrem T, Erskine R. Effect of infection with bovine leukemia virus on milk production in Michigan dairy cows. Journal of Dairy Science. 2016; 99(3):2043-52. https://doi.org/10.3168/jds.2015-10089 PMid:26723124
  • Cadavid L. Impacto del Leucosis Viral Bovina en la produccion de leche. Colombia: Universidad Nacional de Colombia. 2012.
  • Santamaria J. Estudio de parametros productios y reproductivos en vacas seropositivas y seronegativas al virus de la leucosis bovina (BLV) entreshatos de produccion lechera. Ecuador: Escuela Politecnica del Ejercito. Pichincha. 2014.
  • Szewczuk M, Zych S, Katafiasz S. Diagnosis of the bovine leukaemia virus infection in Polish Holstein-Friesian cows and comparison of their milk productivity. Acta Veterinaria Brno. 2012; 81(4):353-8. https://doi.org/10.2754/ avb201281040353
  • Bartlett PC, Norby B, Byrem TM, Parmelee A, Ledergerber JT, Erskine RJ. Bovine leukemia virus and cow longev ity in Michigan dairy herds. Journal of Dairy Science. 2013; 96(3):1591-7. https://doi.org/10.3168/jds.2012-5930 PMid:23332856
  • Carignano HA, Beribe MJ, Caffaro ME, Amadio A, Nani JP, Gutierrez G. BOLA‐DRB3 gene polymorphisms influence bovine leukaemia virus infection levels in Holstein and Holstein × Jersey crossbreed dairy cattle. Animal Genetics. 2017; 48(4):420-30. https://doi.org/10.1111/age.12566 PMid:28568505
  • Juliarena MA, Barrios CN, Ceriani MC, Esteban EN. Hot topic: Bovine leukemia virus (BLV) - infected cows with low proviral load are not a source of infection for BLV-free cattle. Journal of Dairy Science. 2016; 99(6):4586-9. https:// doi.org/10.3168/jds.2015-10480 PMid:27085403
  • Juliarena MA, Gutierrez SE, Ceriani C. Determination of proviral load in bovine leukemia virus-infected cattle with and without lymphocytosis. American Journal of Veterinary Research. 2007; 68(11):1220-5. https://doi.org/10.2460/ajvr.68.11.1220 PMid:17975977
  • Gutierrez G, Alvarez I, Politzki R, Lomonaco M, Dus Santos MJ, Rondelli F. Natural progression of Bovine Leukemia Virus infection in Argentinean dairy cattle. Veterinary Microbiology. 2011; 151(3-4):255-63. https:// doi.org/10.1016/j.vetmic.2011.03.035 PMid:21550733
  • Florins A, Gillet N, Asquith B, Boxus M, Burteau C, Twizere J-C. Cell dynamics and immune response to BLV infection: a unifying model. Frontiers in Bioscience. 2007; 12:152031. https://doi.org/10.2741/2165 PMid:17127399
  • Brujeni GN, Ghorbanpour R, Esmailnejad A. Association of BoLA-DRB3.2 Alleles with BLV Infection Profiles (Persistent Lymphocytosis/Lymphosarcoma) and Lymphocyte Subsets in Iranian Holstein Cattle. Biochemical Genetics. 2016; 54(2):194-207. https://doi.org/10.1007/s10528-016-9712-6 PMid:26782666
  • Xu A, van Eijk MJ, Park C, Lewin HA. Polymorphism in BoLA-DRB3 exon 2 correlates with resistance to persistent lymphocytosis caused by bovine leukemia virus. The Journal of Immunology. 1993; 151(12):6977-85. PMid:8258704
  • Mirsky ML, Olmstead C, Da Y, Lewin HA. Reduced bovine leukaemia virus proviral load in genetically resistant cattle. Animal Genetics. 1998; 29(4):245-52. https://doi.org/10.1046/j.1365-2052.1998.00320.x PMid:9745662
  • Jimba M, Takeshima S, Matoba K, Endoh D, Aida Y. BLVCoCoMoqPCR: Quantitation of bovine leukemia virus proviral load using the CoCoMo algorithm. Retrovirology. 2010; 7:91. https://doi.org/10.1186/1742-4690-7-91 PMid:21044304 PMCid:PMC2988707
  • Hernandez D, Mu-oz J, Alvarez L. Dynamics of Bovine leukosis in creole cattle Harton del Valle in natural infection. Archivos de Zootecnia. 2016; 65(251):365-73. https://doi.org/10.21071/az.v65i251.698
  • Hernandez D, Montes D, Alvarez LA. Association of Bola-DRB3.2 Alleles with Enzootic Bovine Leukosis: Profiles BLV Infection, Persistent Lymphocytosis and Antibody Production in Harton Del Valle Cattle. Indian Journal of Science and Technology. 2018; 11(24):1-14. https://doi.org/10.17485/ijst/2018/v11i24/128164
  • Takeshima S-N, Matsumoto Y, Miyasaka T, Arainga‐ Ramirez M, Saito H, Onuma M, et al. A new method for typing bovine major histocompatibility complex class II DRB3 alleles by combining two established PCR sequence-based techniques. Tissue Antigens. 2011; 78(3):208-13. https://doi.org/10.1111/j.1399-0039.2011.01708.x PMid:21623735
  • Baxter R, Hastings N, Law A, Glass EJ. A rapid and robust sequence-based genotyping method for BoLA-DRB3 alleles in large numbers of heterozygous cattle. Animal Genetics. 2008; 39(5):561-3. https://doi.org/10.1111/j.1365-2052.2008.01757.x PMid:18637877
  • Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources. 2010; 10(3):564-7. https://doi.org/10.1111/j.1755-0998.2010.02847.x PMid:21565059
  • Giovambattista G, Takeshima S, Ripoli MV, Matsumoto Y, Franco LAA, Saito H, et al. Characterization of bovine MHC DRB3 diversity in Latin American Creole cattle breeds. Gene. 2013; 519(1):150-8. https://doi.org/10.1016/j.gene.2013.01.002 PMid:23333729
  • Hernandez D, Mu-oz J, Alvarez L. Genetic diversity of BoLA-DRB3 gene in Colombian creole Harton del Valle cattle. Revista CES de Medicina Veterianaria y Zootecnia. 2015; 10(1):18-30.
  • Miyasaka T, Takeshima S, Matsumoto Y, Kobayashi N, Matsuhashi T, Miyazaki Y. The diversity of bovine MHC class II DRB3 and DQA1 alleles in different herds of Japanese Black and Holstein cattle in Japan. Gene. 2011; 472(1-2):42-9. https://doi.org/10.1016/j.gene.2010.10.007 PMid:20965236
  • Lee B-Y, Hur T-Y, Jung Y-H, Kim H. Identification of BoLA-DRB3.2 alleles in Korean native cattle (Hanwoo) and Holstein populations using a next generation sequencer. Animal Genetics. 2012; 43(4):438-41. https://doi.org/10.1111/j.1365-2052.2011.02264.x PMid:22497659
  • Takeshima SN, Miyasaka T, Polat M, Kikuya M, Matsumoto Y, Mingala CN. The great diversity of major histocompatibility complex class II genes in Philippine native cattle. Meta Gene. 2014; 2:176-90. https://doi.org/10.1016/j.mgene.2013.12.005 PMid:25606401 PMCid:PMC4287811
  • Farias MVN, Caffaro ME, Lendez PA, Passucci J, Poli M, Ceriani MC, et al. A novel association of BoLA DRB3 alleles in BLV infected cattle with different proviral loads. Brazilian Journal of Veterinary Research and Animal Science. 2017; 54(3):215-24. https://doi.org/10.11606/ issn.1678-4456.bjvras.2017.123769
  • Vilaca L, Diniz W, Melo T, Oliveira J, Guido S, Brito C, et al. BoLA-DRB3 gene polymorphisms in 5/8 Girolando and Holstein dairy. Archivos de Zootecnia. 2016; 65(249):7-11.
  • Gholamreza N, Ghorbanpour R, Esmailnejad A. Association of BoLA-DRB3.2 Alleles with BLV Infection Profiles (Persistent Lymphocytosis/Lymphosarcoma) and Lymphocyte Subsets in Iranian Holstein Cattle. Biochemical Genetics. 2016; 54(2):194-207. https://doi.org/10.1007/ s10528-016-9712-6 PMid:26782666
  • Takeshima S-N, Giovambattista G, Okimoto N, Matsumoto Y, Rogberg-Mu-oz A, Acosta TJ. Characterization of bovine MHC class II DRB3 diversity in South American Holstein cattle populations. Tissue Antigens. 2015; 86(6):419-30. https://doi.org/10.1111/tan.12692 PMid:26514650
  • Miyasaka T, Takeshima S-, Jimba M, Matsumoto Y, Kobayashi N, Matsuhashi T. Identification of bovine leukocyte antigen class II haplotypes associated with variations in bovine leukemia virus proviral load in Japanese Black cattle. Tissue Antigens. 2013; 81(2):72-82. https://doi.org/10.1111/tan.12041 PMid:23216331
  • Juliarena MA, Poli M, Sala L, Ceriani C, Gutierrez S, Dolcini G. Association of BLV infection profiles with alleles of the BoLADRB3.2 gene. Animal Genetics. 2008; 39(4):432-8. https:// doi.org/10.1111/j.1365-2052.2008.01750.x PMid:18573126
  • Hayashi T, Mekata H, Sekiguchi S, Kirino Y, Mitoma S, Honkawa K, et al. Cattle with the BoLA class II DRB3*0902 allele have significantly lower bovine leukemia proviral loads. The Journal of Veterinary Medical Science. 2017; 79(9):1552-5. https://doi.org/10.1292/jvms.16-0601 PMid:28757522 PMCid:PMC5627326
  • Bola-os I, Hernandez D, Alvarez L. Asociacion de los alelos del gen BoLA-DRB3 con la infeccion natural de Babesia sppen el ganado criollo Harton del Valle. Archivos de Zootecnia. 2017; 66(253):113-20.
  • Takeshima S, Sasaki S, Meripet P, Sugimoto Y, Aida Y. Single nucleotide polymorphisms in the bovine MHC region of Japanese Black cattle are associated with bovine leukemia virus proviralload. Retrovirology. 2017; 14(1):24. https://doi.org/10.1186/s12977-017-0348-3 PMid:28376881 PMCid:PMC5379713
  • Carignano HA, Roldan DL, Beribe MJ, Raschia MA, Amadio A, Nani JP. Genome-wide scan for commons SNPs affecting bovine leukemia virus infection level in dairy cattle. BMC Genomics. 2018; 19(1):142. https://doi.org/10.1186/s12864-018-4523-2 PMid:29439661 PMCid:PMC5812220
  • Abdalla EA, Pe-Agaricano F, Byrem TM, Weigel KA, Rosa GJM. Genome‐wide association mapping and pathway analysis of leukosis incidence in a US Holstein cattle population. Animal Genetics. 2016; 47(4):395-407. https://doi.org/10.1111/age.12438 PMid:27090879
  • Takeshima S, Matsumoto Y, Chen J, Yoshida T, Mukoyama H, Aida Y. Evidence for cattle major histocompatibility complex (BoLA) class II DQA1 gene heterozygote advantage against clinical mastitis caused by Streptococci and Escherichia species. Tissue Antigens. 2008; 72(6):525-31. https://doi.org/10.1111/j.1399-0039.2008.01140.x PMid:19000149
  • Mekata H, Yamamoto M, Hayashi T, Kirino Y, Sekiguchi S, Konnai S. Cattle with a low bovine leukemia virus proviral load are rarely an infectious source. Japanese Journal of Veterinary Research. 2018; 66(3):157-63.

Abstract Views: 228

PDF Views: 0




  • The Proviral Load of the Bovine Leukosis Virus is Associated with the Polymorphisms of the BoLA-DRB3 Gene in the HartonDel Valle Breed

Abstract Views: 228  |  PDF Views: 0

Authors

Darwin Hernandez
University of Sucre, Sincelejo, Colombia
Donicer Montes
University of Sucre, Sincelejo, Colombia
Jaime De La Ossa-V
University of Sucre, Sincelejo, Colombia

Abstract


Objective: To associate the proviral load (PVL) of the bovine leukosis virus found in the Harton del Valle (HV) breed with the alleles of the BoLA-DRB3 gene. Methods: In 100 HV animals, the PVL was evaluated using a real-time quantitative PCR and a TaqMan probe; the animals were classified according to their PVL in high proviral load (HPVL) or low proviral load (HPVL). Additionally, the animals were genotyped using the PCR-SBT method. The allele frequencies were estimated. Alleles were associated with HPVL (susceptible, S), LPVL (resistant, R) or neutral (N) using the Odds ratio (OR) statistic and the presence of common amino acids in the R and S alleles were determined. Findings: A total of 22 alleles were found, the *1101 was the most frequent. High-frequency alleles accumulate 71.9%. The PVL mean was 129740 copies/μg of DNA. Seven alleles were associated with PVL, alleles *1002, *1601 and *1701 with HPVL (S) and alleles *0902, *1101, *20012 and *2703 with LPVL (R). The PVL of the alleles S and R was 516966 and 75074 copies/μg of DNA respectively. The allelic frequency R and genotype RR accumulated was higher than that of the alleles and genotypes S. The amino acid Glu located in positions 70 of the DRβ peptide chain was common in the R alleles. Application/Improvements: The resistance to the PVL (LPVL) has particularities in each breed since the alleles according to the literature reports are not the same. These results can be used in selection programs in favor of the genes categorized here as R, and thus, decrease the infection rate of the virus.

References





DOI: https://doi.org/10.17485/ijst%2F2018%2Fv11i43%2F132506