The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Objectives: Manganese Ferrite nanoparticles are a current hot topic in medicine and pharmaceutics. In the current investigation, MnFe2O4 NPs/ABS Nanocomposite have been successfully synthesized via Co-precipitation method process. Methods/Statistical Analysis: Manganese Ferrite nanoparticles (MnFe2O4 (MF) NPs) were synthesized by the Co-precipitation method then annealing at 400°C. A nanocomposite of MnFe2O4 with acrylonitrile (A) butadiene (B) styrene (S) (MF/ABS) was prepared. Scanning electron microscopy (SEM), energy dispersive analysis X-ray (EDAX) and transition electron microscopy (TEM) were used to characterize the morphology and particle size of the MF NPs and MF/ ABS nanocomposite. Findings: The nano-powders obtained have a spherical structure and particle size of approximately 8 nm. The optical properties were studied by UV-Vis spectroscopy to estimate the band gap of the MF NPs and MF/ ABS nanocomposite. The magnetic properties of the MF NPs and MF/ABS nanocomposite were investigated using a vibrating sample magnetometer (VSM). We found that the MF NPs exhibit a superparamagnetic behaviour. The saturation magnetization Ms (8.4277E-3 emu/g) and coercivity Hci (91.208 G) at room temperature for the MF/ABS nanocomposites were higher than Ms and Hci for the MF NPs. The exchange bias effect appears in the MF/ABS nanocomposite. The thermal results show that the glass transition temperature (Tg) of the MF/ABS nanocomposites is 108.54 ºC. Application/ Improvements: Adding 10% of MF NPs to ABS polymer enhance ABS thermal properties and change ABS magnetic properties.

Keywords

Exchange Bias Effect, Nanocomposite, Superparamagnetic, Thermal Stability, ABS
User