The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Background/Objectives: The objective of this research owes to propose a fixed voltage controller for wind energy based individual Self-Excited Induction Generator (SEIG). The ideology is that simple as to exploit the use of a voltage source inverter, employing with the fundamental principle of PWM technique that in corporate an individual battery source for the smooth operation. Methods/Statistical Analysis: The incidence of depressed voltage regulation because of the unexpected alteration in the speed and the load is one of the main demerits of the SEIG. In order to overcome this complicated situation, a modification of phase shift in the sinusoidal PWM is introduced, which standardizes the voltage of SEIG, when it is subjected to unexpected alteration in the load. Findings: It is likely to attain a fixed value of voltage when the load is altered from empty load to the complete load. The simulation of the presented scheme has been carried out by MATLAB/SIMULINK modeling. The consistency of the proposed model is determined by the outcomes of the prototype testing. Application/Improvements: By varying the modulating index of the voltage source inverter, the stabilization of output voltage for SEIG has been achieved. One of its major advantages is that by simply checking the dc link voltage, the characteristics of the current state can be predictable.

Keywords

Alteration in Load, Induction Generator, PWM, Self-Excited, Voltage Controller, Voltage Source Inverter.
User