Refine your search
Co-Authors
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Geethalakshmi, V.
- Rainfall Scenario in Future over Cauvery Basin in India
Abstract Views :206 |
PDF Views:0
Authors
Affiliations
1 Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore-3
1 Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore-3
Source
Indian Journal of Science and Technology, Vol 6, No 7 (2013), Pagination: 4966-4970Abstract
A study was undertaken for developing rainfall scenarios using the ensemble of all 16 different Global Climate Model outputs for A1b scenario for mid (2040-2069) and end (2070-2099) century. For the analysis, the entire Cauvery basin was demarcated into five smaller basins viz., Basin 1 (Upper Cauvery upto Mettur reservoir), Basin 2 (Bhavani basin from Mettur to Upper Anicut), Basin 3 (Amaravathy basin), Basin 4 (Upper Anicut to Grand Anicut) and Basin 5 (Downstream of Grand Anicut, including lower Anicut and the delta region). From the 16 Global Climate Model ensemble outputs, rainfall in the mid century is expected to increase in the SWM months starting from May through December in the order of 1 to 36% (Basin 1), 3 to 21% (Basin 2), 1 to 17% (Basin 3), 3 to 22% (Basin 4) and 4 to 22% (Basin 5). The same trend is expected in the end century with different magnitude. The South West Monsoon (JJAS) and post-monsoon rainfall (ONDJ) is expected to increase towards mid and end century whereas not much change is expected in the pre-monsoon rainfall in the future. Annual rainfall is expected to be 21, 11 and 7% more during mid century compared to the baseline (1981-2000) in the upper Cauvery (Basin 1), mid Cauvery (Basin 2, 3 and 4) and delta region (Basin 5) respectively. The rainfall would be higher by 33, 15 and 10% than the current quantity in the upper Cauvery, mid Cauvery and delta region respectively during end century. These results could contribute to the development of policies for future agricultural water management.Keywords
Cauvery Basin, Climate Model Ensemble, RainfallReferences
- Indian Network for Climate Change Assessment (INCCA) (2010). A sectoral and regional analysis for 2030S, A 4x4 assessment.
- IPCC (2007). Climate change 2007: climate change impacts, adaptation and vulnerability, IPCC Fourth Assessment Report. http://www.ipcc.ch/SPM6avr07.pdf.
- Rupakumar K, Kumar K et al. (2003). Future climate scenario. Climate change and Indian vulnerability assessment and adaptation, Universities Press (India) Pvt. Ltd, Hyderabad, 462.
- Khan S A, Kumar S et al. (2009). Climate change, climate variability and Indian agriculture: impacts vulnerability and adaptation strategies, Climate Change and Crops, Environmental Science and Engineering, 19–38, DOI 10.1007/978-3-540-88246-6 _2.
- Wood A W, Leung L R et al. (2004). Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs, Climatic Change, vol 62(1–3), 189–216.
- Comparative Performance of RegCM Model Versions in Simulating Climate Change Projection over Cauvery Delta Zone
Abstract Views :245 |
PDF Views:0
Authors
Affiliations
1 Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore-641003, Tamilnadu, IN
1 Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore-641003, Tamilnadu, IN
Source
Indian Journal of Science and Technology, Vol 6, No 8 (2013), Pagination: 5115-5119Abstract
RegCM is a Regional Climate Model (RCM), mostly applied in regional climate change and seasonal prediction around the world. The International Centre for Theoretical Physics improves this model and releases updated version over years. In the present study a comparison was made between RegCM3 and RegCM4 versions of this model in simulating climate change over Cauvery Delta Zone of Tamilnadu. The simulations were made using ECHAM5 global climate model outputs of A1B scenario with a resolution of 25 km from 1971 to 2100. The comparison of yearly and decadal means indicated that there exists a significant and positive difference in simulation of rainfall and relative humidity by RegCM4 while solar radiation, maximum temperature, minimum temperature and wind speed showed significant negative difference. The Seasonal and monthly comparisons revealed that difference across weather variables is not consistent as that of yearly and decadal. The decadal projections showed a marked increase in maximum temperature, minimum temperature and rainfall. A slight increase in relative humidity and a slight decline in solar radiation and wind speed were noticed under RegCM4 simulations.Keywords
RegCM3, RegCM4, Cauvery Delta Zone, A1B ScenarioReferences
- Munn R E (1998). Emerging Environmental Issues, SCOPE-UNEP Report, Paris and Nairobi, 34.
- IPCC (2000). Emission scenarios, a special report of IPCC Working Group III, Cambridge University Press, Cambridge, UK.
- Ghosh S, and Mujumdar P P (2006). Future rainfall scenario over Orissa with GCM projections by statistical downscaling, Current Science, vol 90(3), 396–404.
- Xu C Y (1999). Climate change and hydrologic models: a review of existing gaps and recent research developments, Water Resources Management, vol 13(5), 369–382.
- IPCC (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Parry, Canziani M L, Palutikof O F et al. (Eds.), Cambridge University Press, Cambridge, UK, 976.
- Giorgi F, Marinucci M R et al. (1993a). Development of a second generation regional climate model (RegCM2), Part I: Boundary layer and radiative transfer processes, Monthly Weather Review, vol 121, 2794–2813.
- Giorgi F, Marinucci M R et al. (1993b). Development of a second generation regional climate model (RegCM2), Part II: Convective processes and assimilation of lateral boundary conditions, Monthly Weather Review, vol 121, 2814–2832.
- Giorgi F, and Mearns L O (1999). Introduction to special section: regional climate modeling revisited, Journal of Geo-physical Research, vol 104(D6), 6335–6352.
- Pal J S, Small E E et al. (2000). Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM, Journal of Geophysical Research, vol 105(D24), 29579–29594.
- Giorgi F, and Anyah R O (2012). The road towards RegCM4, Climate Research, vol 52, 3–6.
- Pal J S, Small E E et al. (2000). Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM, Journal of Geophysical Research, vol 105(D24), 29579–29594.
- Singh J, Bhattacharya B K et al. (2009). Long term trend analysis of surface insolation and evaporation over selected climate types in India, ISPRS Archives XXXVIII-8/W3 Workshop Proceedings: impact of Climate Change on Agriculture, 366–370.
- Kumari B P, and Goswami B N (2010). Seminal role of clouds on solar dimming over the Indian monsoon region, Geo-physical Research Letters, vol 37(6), L06703_1–L06703_5.
- Krishnakumar K, Patwardhan S K et al. (2011). Simulated projections for summer monsoon climate over India by a high-resolution regional climate model (PRECIS), Current Science, vol 101, No. 3, 312–326.
- Rupakumar K, Sahai A K et al. (2006). High-resolution climate change scenarios for India for the 21st century, Current Science, vol 90(3), 334–345.
- Kumar K R, Kumar K K et al. (2003). Future climate scenarios. Climate Change and India: Vulnerability Assessment and Adaptation, Shukla P R, Subodh K Sharma, Ravindranath N H, Amit Garg and Sumana Bhattacharya (Eds.), Universities Press, Hyderabad, 69–127.
- Identification of Efficient Cropping Zone for Rice, Maize and Groundnut in Tamil Nadu
Abstract Views :419 |
PDF Views:0
Authors
Affiliations
1 Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore-3, IN
1 Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore-3, IN
Source
Indian Journal of Science and Technology, Vol 6, No 10 (2013), Pagination: 5298-5301Abstract
A methodological study was made at the Agro Climate Research Centre, Tamil Nadu Agricultural University, and Coimbatore during 2012 to identify the potential districts for cultivation of rice, maize and groundnut in Tamil Nadu. The data on area, production and productivity of study crops for 2000–‘01 to 2009–‘10 were collected and indices such as Relative Spread Index (RSI) and Relative Yield Index (RYI) were computed and the potential cropping districts for the study crops were identified. In Tamil Nadu, nine districts were found to be prospective regions for rice, seven districts for maize and three districts for groundnut as in these areas both the RYI and the RSI were high. In some of the districts, RSI is more for a particular crop, while the RYI is low indicating non suitability of that crop. However, due to other factors such as market demand and value of the produce, farmers cultivate the crops that are not suitable for their location which relates in high RSI with low RYI.Keywords
Efficient Cropping Zone, Relative Spread Index, Relative Yield IndexReferences
- Sanbagavalli S, Rohini A et al. (2002). Efficient cropping zones - decadal analysis for major crops in Tamil Nadu, Indian Journal of Agricultural Research, vol 36(4), 227–233.
- Thavaprakaash N, Babu C et al. (2008). Identifying potential cropping zones for important horticultural crops of Tamil Nadu, The Madras Agricultural Journal, vol 95(7–12), 418–424.
- Veeraputhiran R, Kathikeyan R et al. (2003). Crop planning climate atlas – principles, Relative spread index and relative yield index, A.E. Publications, Coimbatore, 156–158.
- Kanwar J (1972). Cropping patterns, scope and concept, In. Proc. Symp, on Cropping Pattern in India, ICAR, New Delhi, 11–32.
- Narayanan A L, Balasubramanian T N et al. (2003). Identification of efficient rice cropping zone for union territory of Pondicherry, The Madras Agricultural Journal, vol 90 (10–12), 729–731.
- Poornima S, Kokilavani S Et al. (2008). Examining the prospective cropping zone of important field crops of Tamil Nadu, The Madras Agricultural Journal, vol 95 (7–12), 364–370.
- Effect of Elevated Temperature on Development Time of Rice Yellow Stem Borer
Abstract Views :314 |
PDF Views:0
Authors
Affiliations
1 (Agricultural Meteorology), Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, IN
2 (Department of Entomology), Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, IN
3 (Agro Climate Research Centre), Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, IN
1 (Agricultural Meteorology), Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, IN
2 (Department of Entomology), Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, IN
3 (Agro Climate Research Centre), Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, IN
Source
Indian Journal of Science and Technology, Vol 6, No 12 (2013), Pagination: 5563–5566Abstract
Insects, as cold-blooded animals are directly under the control of temperature for their growth and they cannot sustain living below and above certain thresholds. Therefore, temperature is probably the single most important environmental factor influencing insect behavior. Current estimates of changes in climate indicate an increase in global mean annual temperatures of 1°C by 2025 and 3°C by the end of the next century. Such increases in temperature may decrease the developmental time and increase the number of generations per year. An investigation was adopted to understand the effect of five different constant temperatures (28.3°C, 30.6°C, 32.7°C, 34.3°C and 36°C) on the development time of Yellow Stem Borer (YSB). The results revealed that the number of eggs laid by YSB increased at higher temperatures while egg hatching was reduced. Egg hatching was higher (90.6%) in 30.6°C followed by 28.3°C. The development time taken by different stages of the YSB revealed that there was an inverse relationship with development time and incubation temperature level. Insects develop faster which may oviposit early and hence the population was likely to grow earlier than expected.Keywords
Yellow Stem Borer, Temperature, Climate Change, Global WarmingReferences
- Dhaliwal G S, Jindal V et al. (2010). Insect pest problems and crop losses: changing trends, Indian Journal of Ecology, vol 37(1), 1–7.
- Saxena R C, and Shrivastava R C (2007). Entomology at a glance, Agrotech Publishing Academy, Udaipur, India, 464.
- Pathak M D, and Dhaliwal G S (1981). Trends and strategies for rice insect problems in tropical Asia, International Rice Research Institute LosBanos: IRRI research paper series, vol 64, 15.
- Listinger J A (1979). Major insect–pests of rainfed wetland rice, Tropical Asia International Rice Research Newsletter, vol 4(2), 14–15.
- Banerjee S N, and Pramanik L M (1967). The lepidopterous stalk borers of rice and their life cycle in the tropics, The major insect pests of the rice plant, Proceedings of a Symposium, 103–124.
- Pathak M D (1968). Ecology of common insect pests of rice, Annual Review of Entomology, vol 13(1), 257–294.
- Chelliah A, Benthur J S et al. (1989). Approaches to rice management-achievements and opportunities, Oryzae, vol 26(2), 12–26.
- Bale J, Masters G et al. (2002). Herbivory in global climate change research: direct effects of rising temperature on insect herbivores, Journal of Global Change Biology, vol 8(1), 1–16.
- Intergovernmental Panel on Climate Change (IPCC) (2007). Climate change 2001: Third Assessment Report of the Intergovernmental Panel on Climate Change, 809.
- Hansen M E, Bentz B J et al. (2001). Temperature based model for predicting univoltine brood proportions in spruce beetle (Coleoptera: Scolytidae), Canadian Entomologist, vol 133(6), 827–841.
- Bonato O, Lurette A et al. (2007). Modelling temperature–dependent bionomics of Bemisiatabaci (Q-biotype), Physiological Entomology, vol 32(1), 50–55.
- Xiaoping Y, Guorui W et al. (1992). Effect of high temperatures on the survival and fecundity of Brown Plant Hopper (BPH) Nilaparvata lugens Stal, IRRN–International Rics Research Newsletter, vol 17(2), 26.
- Intergovernmental Panel on Climate Change (IPCC) (2001). Climate change 2007: Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 94.
- Saxena R C, Medrano F G et al. (1990). Rearing Yellow Stem Borer (YSB) for screening varietal resistance, International Rice Research Newsletter, vol 15(3), 15.
- Pathak M D, and Khan Z R (1994). Insect pests of rice, IRRI, Philippines, 89.
- Jose A, Mutt M et al. (1984). Effects of temperature on the embryonic development of Willowsia jacobsoni (Borner) (Collembola: Entomobryidae), Caribbean Journal of Science, vol 20(1–2), 57–66.
- Komazaki S (1982). Effects of constant temperature on population growth of three aphid species, Toxopteracitricidus (Kirkaldy), Aphis citricola Van Der Goot and Aphis gossypii Glover (Homoptera: Aphididae) on citrus, Applied Entomology and Zoology, vol 17(1), 75–81.
- Mink A K, and Harrewijn P (1987). Aphids: their biology, natural enemies and control, vol A, Elsevier, Amsterdam, The Netherlands, 450.
- Hirano K, Honda K I et al. (1996). Effects of temperature on development, longevity and reproduction of the soybean aphid, Aphis glycines (Homoptera: Aphididae), Applied Entomology and Zoology, vol 31(1), 178–180.
- Wang J J, and Tsai J H (2001). Development, survival and reproduction of black citrus aphid, Toxoptera aurantii(Hemiptera: Aphididae), as a function of temperature, Bulletin of Entomological Research, vol 91(6), 477–487.
- Tamiru A, Getu E et al. (2011). Effect of temperature and relative humidity on the development and fecundity of Chilopartellus (Swinhoe) (Lepidoptera: Crambidae), Bulletin of Entomological Research, vol 102(1), 9–15.
- Influence of Projected Climate on Rice Yield Over Tamilnadu
Abstract Views :101 |
PDF Views:0
Authors
Affiliations
1 Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore-641003, Tamilnadu, IN
1 Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore-641003, Tamilnadu, IN
Source
Indian Journal of Science and Technology, Vol 8, No 11 (2015), Pagination:Abstract
A study was carried out at Agro Climate Research Centre, Tamil Nadu Agricultural University using PRECIS and RegCM4 Regional Climate Models (RCMs) by downscaling HadCM3 (Q0) and ECHAM5 global climate model outputs at 25 km resolution. The downscaled data obtained from the RCMs were verified with CRU observed climatology and found to have good agreement. Four weather variables viz., maximum temperature, minimum temperature, solar radiation and rainfall were extracted and employed in DSSAT crop simulation model for rice yield simulation for agricultural grids of Tamilnadu State India from 1971-2100. Two treatments were fixed as control and CO2 enriched conditions. The maximum temperature and minimum temperature showed increase in temperature at the end of the century with high rate of increase for minimum temperature. Rainfall exhibited high variability. The rice yield simulations showed decline in yield in the study period for both control and CO2 enriched conditions, with later consistently showing higher yields than the former till the end of 21st century.Keywords
21st Century, Climate Projection, Rice Yield, Tamilnadu- Evaluation of Weather based Crop Insurance Products for Kharif Rice
Abstract Views :47 |
PDF Views:0
Authors
Affiliations
1 Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore-641 003, IN
1 Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore-641 003, IN
Source
Indian Journal of Science and Technology, Vol 8, No 12 (2015), Pagination:Abstract
Background/Objectives: WBCIS products proposed by three insurance providers were evaluated using historical weather data for kharif rice in Dharmapuri, Theni, Tirunelveli and Virudhunagar districts of Tamil Nadu. Rice is sensitive to moisture stress at reproductive stage as it consumes large amount of water during the major part of reproductive phase. Results/ Findings: Evaluation of the strike events revealed that all the study districts are highly vulnerable to deficit rainfall risk. The soil factor and the intensity of rainfall during critical stages of the crops must be considered for excess rainfall. Water holding capacity of the soil and the daily ET must be taken into account for consecutive dry days. Conclusion/Application: Hypothetical analysis showed that the product designed by AIC for Virudhunagar was reliable both in terms of threshold values and compensation rate per mm of rainfall under different phases of crop growing period. This could be supported through higher monetary returns benefited by the farmer at Virudhunagar district.Keywords
Insurance Companies, Payout, Product Design, Rice, Strike Events- Sustainable Integrated Farming Systems for Drylands - A Review
Abstract Views :107 |
PDF Views:1
Authors
Affiliations
1 Department of Agronomy, Tamil Nadu Agricultural University, Coimbatore - 641 003, IN
1 Department of Agronomy, Tamil Nadu Agricultural University, Coimbatore - 641 003, IN
Source
Agricultural Reviews, Vol 24, No 3 (2003), Pagination: 204-210Abstract
The traditional cropping leads to a high degree of uncertainty in yield, income and employment under dryland conditions. The integrated farming system approach introduces a change in the farming techniques for maximum productivity in farming by optimal utilisation of resources. Judicious mix of agricultural crops and other enterprises suited to the given agroclimatic condition and socio-economic status of the farmer would improve the prosperity in the farming. The present day trend towards sustainable agriculture encourages the utilisation of residue and waste materials of crop and its allied activities for enrichment of soil nutrients, water retention to protect the enviromnent over a long period. In this treatise, relevant literature on farming systems research, contribution of different components in the farming system under drylands are briefly reviewed.- Evaluation of Weather-Based Crop Insurance Products for Kharif Groundnut
Abstract Views :47 |
PDF Views:8
Authors
Affiliations
1 Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore 641 003, IN
1 Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore 641 003, IN
Source
Current Science, Vol 107, No 11 (2014), Pagination: 1866-1871Abstract
Weather-based crop insurance scheme (WBCIS) products proposed by four insurance providers was compared and evaluated using historical weather data for piloting WBCIS on kharif groundnut in Coimbatore, Dharmapuri, Theni, Tirunelveli and Virudhunagar districts of Tamil Nadu. Water deficits during the vegetative phases of groundnut crop generally delay flowering and maturity thereby reducing the crop growth and yield. The study revealed that the deficit rainfall risk was more pronounced in all the abovementioned districts, whereas the risk of excess rainfall impact could be clearly observed in Theni district. Though the occurrence of strike events was for phase- I of deficit rainfall cover, the rate per mm of rainfall fixed by IFFCO-TOKYO was quite low. The product designed for HDFC-ERGO and MS-Cholamandalam was similar, whereas the product for AIC and IFFCO-TOKYO was designed with little variation in context to excess rainfall cover and consecutive dry days. The compensation benefit realized by the farmers of Virudhunagar and Dharmapuri districts was higher followed by Theni because the compensation rate per mm of rainfall fixed by the company was higher, which favours the farmers.Keywords
Insurance Companies, Payout, Product Design, Strike Events.- Effect of Elevated Temperature on Life-History Parameters of Rice Yellow Stem Borer (Scirpophaga incertulas Walker)
Abstract Views :47 |
PDF Views:1
Authors
Affiliations
1 Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore 641 003, IN
2 Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore 641 003, IN
1 Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore 641 003, IN
2 Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore 641 003, IN
Source
Current Science, Vol 110, No 5 (2016), Pagination: 851-857Abstract
A study was undertaken to understand the effect of increasing temperature on population dynamics of yellow stem borer (YSB), Scirpophaga incertulas. Experiments were carried out in a temperature control chamber with five different constant temperatures (28°C, 30°C, 32°C, 34°C and 36°C). The data on agespecific life table at varying temperature regimes revealed that the total lifespan of YSB extended to a maximum of 52 days at 28°C followed by 49 days at 30°C and 46 days at 32°C. In general, survival of the YSB decreased with increasing temperature. Preoviposition period for YSB also decreased with increasing temperature. However, the total number of eggs laid by YSB increased with increasing temperature. Also, 50% fecundity in YSB was recorded on 49.7 days after incubation at 28°C, whereas it was observed as early as 34.4 days at 36°C. All the growth parameters were observed to decrease at 36°C, which reveals that temperature increase above 34°C is detrimental to the development of YSB. The above results reveal that, if the global warming continues at the present phase, it will negatively influence YSB and the population growth will be severely affected in the near future.Keywords
Global Warming, Life and Fecundity Tables, Population Dynamics, Temperature Regime, Yellow Stem Borer.- Assessment of Climate Change Impact on Rice Using Controlled Environment Chamber in Tamil Nadu, India
Abstract Views :45 |
PDF Views:11
Authors
Affiliations
1 Tamil Nadu Agriculture University, Coimbatore 641 003, IN
2 Bioforsk, Norwegian Institute for Agricultural and Environmental Research, Fr. A. Dahlsvei 20, NO-1430 Ås, NO
1 Tamil Nadu Agriculture University, Coimbatore 641 003, IN
2 Bioforsk, Norwegian Institute for Agricultural and Environmental Research, Fr. A. Dahlsvei 20, NO-1430 Ås, NO
Source
Current Science, Vol 112, No 10 (2017), Pagination: 2066-2072Abstract
Impacts of elevated temperature and carbon dioxide (CO2) enrichment on rice were assessed by carrying out an experiment with four dates of planting (1 June and 15 June, 1 and 15 July) during 2014 under two different environmental conditions, viz. ambient and modified (climate control chamber) with +4°C compared to the ambient temperature and CO2 enrichment of 650 ppm. Crops grown under modified environment recorded reduced growth characters (leaf area index, dry matter production, number of tillers m-2), lesser dry matter partitioning towards grain, yield attributes (number of productive tillers m-2, number of filled grains panicle-1) and lower grain yields compared to those grown under ambient condition. Crops subjected to elevated temperature and enriched CO2 attained panicle initiation, flowering and maturity earlier than those under open ambient condition.Keywords
Ambient and Modified Environment, Climate Change Impact, Elevated Temperature, Enriched Carbon Dioxide, Rice.References
- IPCC, Summary for Policymakers, In Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.
- International Rice Research Institute (IRRI). Rice Almanac, Manila, Philippines: International Rice Research Institute, 1997, 2nd edn.
- Peng, S., Ingram, K. T., Neue, H. U. and Ziska, L. H. (eds), Climate Change and Rice. Los Banos, Philippines, 1996, pp. 3–8.
- Alam, M. et al., Impacts, Vulnerability and Adaptation to Climate Change in Asia: Background Paper for Meeting on Adaptation, Beijing, China, United Nations Framework Convention on Climate Change (UNFCCC), 11–13 April 2007.
- Ferrero, A. and Nguyen, V. N., The sustainable development of rice-based production systems in Europe. IRC Newsl., 2004, 54, 115–124.
- Matsushima, S. and Tsunoda, K., Analysis of developmental factors determining yield and application of yield prediction and culture improvement of lowland rice XLV. Effects of temperature and its daily range in different growth stages upon the growth, grain yield, and constitutional factors in rice plants. Proc. Crop Sci. Soc. Jpn, 1958, 26, 243–244.
- Mohandass, S., Kareem, A. A., Ranganathan, T. B. and Jeyaraman, S., Rice production in India under the current and future climate. In Modeling the Impact of Climate Change on Rice Production in Asia (eds Mathews, R. B. et al.), United Kingdom, CAB International, 1995, pp. 165–181.
- Ainsworth, E. A., Rice production in a changing climate: a metaanalysis of responses to elevated carbon dioxide and elevated ozone concentration. Global Change Biol., 2008, 14, 1642–1650.
- Kim, H. Y., Lim, S. S., Kwak, J. H., Lee, D. S., Lee, S. M., Ro, H. M. and Choi, W. J., Dry matter and nitrogen accumulation and partitioning in rice (Oryza sativa L.) exposed to experimental warming with elevated CO2. Plant Soil, 2011, 342(1–2), 59–71.
- Core writing team, Pachauri, R. K. and Reisinger, A., Contribution of working groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change IPCC, Switzerland, 2007, p. 104.
- Tripathy, Rojalin, K., Chaudhari, N. and Patel, N. K., Evaluation of different methods to estimate incoming solar radiation. J. Agrometeorol., 2008, 10 (Special Issue, Part 1), p. 174.
- Geethalakshmi, V., Kokilavani, S., Nagarajan, R., Babu, C. and Poornima, S., Impacts of climate change on rice and ascertaining adaptation opportunities for Tamil Nadu state. In The Proceedings of the International Symposium on Agro Meteorology and Food Security Conducted by CRIDA, Hyderabad, 2008, pp. 21–22.
- Houghton, J. T., MeiraFilho, L. G., Callander, B. A., Harris, N., Kattenberg, A. and Maskell, K. (eds). Climate Change. Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, 1995.
- Keeling, C. D., Whorf, T. P., Wehlen, M. and Van der Pliht, J., Inter annual extremes in the rate of rise in atmospheric carbon dioxide since. Nature, 1995, 375, 666–670.
- Morison, J. I. L. and Lawlor, D. W., Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environ., 1999, 22, 659–682.
- Prinn, R. G., Integrated global system model for climate policy assessment feedback and sensitivity analysis. Clim. Change, 1998.
- Rupa Kumar, K. et al., High-resolution climate change scenarios for India for the 21st century. Curr. Sci., 2006, 90, 334–345.
- Palanisamy, K. M. and Gomez, K. A., Length and width method for estimating leaf area of rice. Agron. J., 1974, 66, 430–433.
- Gomez, K. A. and Gomez, A. A., Statistical Procedure for Agricultural Research, John-Wiley and Sons Inc., New York, 1984, p. 680.
- Mandal, B. K., Sainik, T. R. and Ray, P. K., Effect of age of seedlings and levels of nitrogen on the productivity of rice. Oryza, 1984, 21(2), 232–252.
- Kim, H. R. and Young, H. Y., CO2 concentration and temperature on growth, yield and physiological responses of rice. Adv. Biol. Res., 2010, 1(2), 48.
- Horie, T., Crop ontogeny and development. In Physiology and Determination of Crop Yield (eds Boot, K. J. et al.), American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wisconsin, 1994, pp. 153–1804.