Open Access Open Access  Restricted Access Subscription Access

Increasing the Cruise Range and Reducing the Capital Cost of Electric Vehicles by Integrating Auxiliary Unit with the Traction Drive


Affiliations
1 Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798, Singapore
 

Poor cruise performance of Electric Vehicles (EVs) continues to be the primary reason that impends their market penetration. Adding more battery to extend the cruise range is not a viable solution as it increases the structural weight and capital cost of the EV. Simulations identified that a vehicle spends on average 15% of its total time in braking, signifying an immense potential of the utilization of regenerative braking mechanism. Based on the analysis, a 3 kW auxiliary electrical unit coupled with the traction drive during braking events increases the recoverable energy by 8.4%. In addition, the simulation revealed that, on average, the energy drawn from the battery is reduced by 3.2% when traction drive is integrated with the air-conditioning compressor (an auxiliary electrical load). A practical design solution of the integrated unit is also included in the paper. Based on the findings, it is evident that the integration of an auxiliary unit with the traction drive results in enhancing the energy capturing capacity of the regenerative braking mechanism and decreases the power consumed from the battery. Further, the integrated unit boosts other advantages such as reduced material cost, improved reliability, and a compact and lightweight design.
User
Notifications
Font Size

Abstract Views: 67

PDF Views: 0




  • Increasing the Cruise Range and Reducing the Capital Cost of Electric Vehicles by Integrating Auxiliary Unit with the Traction Drive

Abstract Views: 67  |  PDF Views: 0

Authors

N. Satheesh Kumar
Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798, Singapore

Abstract


Poor cruise performance of Electric Vehicles (EVs) continues to be the primary reason that impends their market penetration. Adding more battery to extend the cruise range is not a viable solution as it increases the structural weight and capital cost of the EV. Simulations identified that a vehicle spends on average 15% of its total time in braking, signifying an immense potential of the utilization of regenerative braking mechanism. Based on the analysis, a 3 kW auxiliary electrical unit coupled with the traction drive during braking events increases the recoverable energy by 8.4%. In addition, the simulation revealed that, on average, the energy drawn from the battery is reduced by 3.2% when traction drive is integrated with the air-conditioning compressor (an auxiliary electrical load). A practical design solution of the integrated unit is also included in the paper. Based on the findings, it is evident that the integration of an auxiliary unit with the traction drive results in enhancing the energy capturing capacity of the regenerative braking mechanism and decreases the power consumed from the battery. Further, the integrated unit boosts other advantages such as reduced material cost, improved reliability, and a compact and lightweight design.