Open Access Open Access  Restricted Access Subscription Access

Gravitational Collapse of a Massive Star and Black Hole Formation


Affiliations
1 Premier University, Chittagong, Bangladesh
 

This paper discusses the final fate of a gravitationally collapse of a massive star and the black hole formation. If the mass of a star exceeds Chandrasekhar limit then it must undergo gravitational collapse. This happens when the star has exhausted its nuclear fuel. As a result a space-time singularity is formed. It is conjectured that singularities must be hidden behind the black hole region which is called the cosmic censorship hypothesis. It has not been possible, to obtain a proof despite many attempts to establish the validity of cosmic censorship and it remains an open problem. An attempt has been taken here to describe causes of black hole formation and nature of singularities therein with easier mathematical calculations.

Keywords

Black Hole, Chandrasekhar Limit, Gravitational Collapse, Singularity.
User
Notifications
Font Size


  • Arnett, W.D. and Bowers, R.L. (1977), A Microscopic Interpretation of Neutron Star St ructure, The Astrophysical Journal Supplement Series: 33: 415–436.
  • Boyer, R.H. and Lindquist, R.W. (1967), Maximal Analytic Extension of Kerr Met ric, Journal of Mathematical Physics, 8(2): 265–281.
  • Chandrasekhar, S. (1983), Mathematical Theory of Black Holes, Clarendon Press, Oxford.
  • Hawking, S.W. and Ellis, G.F.R. (1973), The Large Scale Structure of Space-time, Cambridge University Press, Cambridge.
  • Joshi, P.S. (1996), Global Aspects in Gravitation and Cosmology, 2nd ed., Clarendon Press, Oxford.
  • Joshi P.S. (2013), Spacetime Singularities, arXiv:1311.0449v1 [gr-qc] 3 Nov 2013.
  • Kruskal, M.D. (1960), Maximal Extension of Schwarzschild Met ric, Physical Review, 119(5): 1743–1745.
  • Lipschutz, S. (1965), Theory and Problems of General Topology, Schaum’s Outline Series, McGraw-Hill Book Company, Singapore.
  • Mohajan, H.K. (2013a), Singularity Theorems in General Relativity, M. Phil. Dissertation, Lambert Academic Publishing, Germany.
  • Mohajan, H.K. (2013b), Friedmann, Robertson-Walker (FRW) Models in Cosmology, Journal of Environmental Treatment Techniques, 1(3): 158–164.
  • Mohajan, H.K. (2013c), Schwarzschild Geomet ry of Exact Solution of Einstein Equation in Cosmology, Journal of Environmental Treatment Techniques, 1(2): 69–75.
  • Mohajan, H.K. (2014a), General Upper Limit of the Age of the Univers e, ARPN Journal of Science and Technology, 4(1): 4–12.
  • Mohajan, H.K. (2014b), Upper Limit of the Age of the Universe with Cosmological Constant, International Journal of Reciprocal Symmetry and Theoretical Physics, 1(1): 43–68.
  • Stephani, H.; Kramer, D.; MacCallum, M.; Hoens elaers, C.; Hertl, E. (2003), Exact Solutions to Einstein' s Field Equations (2nd ed.), Cambridge: Cambridge University Press.
  • Szekeres, G. (1960), On the Singularities of a Riemannian Manifold, Publicationes Mathematicae, Debrecen, 7: 285–301.

Abstract Views: 105

PDF Views: 47




  • Gravitational Collapse of a Massive Star and Black Hole Formation

Abstract Views: 105  |  PDF Views: 47

Authors

Haradhan Kumar Mohajan
Premier University, Chittagong, Bangladesh

Abstract


This paper discusses the final fate of a gravitationally collapse of a massive star and the black hole formation. If the mass of a star exceeds Chandrasekhar limit then it must undergo gravitational collapse. This happens when the star has exhausted its nuclear fuel. As a result a space-time singularity is formed. It is conjectured that singularities must be hidden behind the black hole region which is called the cosmic censorship hypothesis. It has not been possible, to obtain a proof despite many attempts to establish the validity of cosmic censorship and it remains an open problem. An attempt has been taken here to describe causes of black hole formation and nature of singularities therein with easier mathematical calculations.

Keywords


Black Hole, Chandrasekhar Limit, Gravitational Collapse, Singularity.

References