Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Testing the Hedging Effectiveness of Index and Individual Stock Futures Contracts:Evidence from India


Affiliations
1 Department of Management, I. K. Gujral Punjab Technical University, Kapurthala, Punjab, India
     

   Subscribe/Renew Journal


Present study attempts to estimate hedging effectiveness in Indian equity futures market using NIFTY50 index futures and its 17 composite stock futures (out of 50 stocks). The study uses near month futures contracts from their respective date of inception until March 31, 2017. The study applies eight methods, proposed in the literature, to estimate optimal hedge ratio namely; Naïve, Ederington’s OLS, ARMA-OLS, VAR, VECM, GARCH, EGARCH, and TARCH. It is observed that OLS hedge ratio provides highest hedging effectiveness, whereas lowest hedging effectiveness is given by Naïve and time-varying models. The above observations imply that constant hedging is more efficient than dynamic hedging which is consistent with the findings of Wang et al (2015) and Bonga and Umoetok (2016).

Keywords

Equity Futures Market, GARCH, Hedging Effectiveness, OLS, Optimal Hedge Ratio.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Abdulnasser Hatemi-Ja, E. R. (2006). Calculating the optimal hedge ratio constant, time varying and the Kalman filter approach. Applied Economics Letters, 13, 293-299.
  • Aggarwal, R., & DeMaskey, A. L. (1997). Using derivatives in major currencies for cross-hedging currency risks in asian emerging markets. Journal of Futures Markets, 17(7), 781-796.
  • Alizadeh, A., & Nomikos, N. (2004). A markov regime switching approach for hedging stock indices. Journal of Futures Market, 24(7), 649-674.
  • Anderson, R. W., & Danthine, J. P. (1981). Cross hedging. The Journal of Political Economy, 1182-1196.
  • Awang, N., Azizan, N. A., Ibrahim, I., & Said R. M. (2014). Hedging effectiveness of stock index futures market: An analysis on Malaysia and Singapore futures markets. Research Paper Presented in International Conference on Economics, Management and Development Proceedings, 24-34.
  • Baillie, R. T., & Myers, R. J. (1991). Bivariate GARCH estimation of the optimal commodity futures hedge. Journal of Applied Econometrics, 6(2), 109-124.
  • Benet, B. A. (1992). Hedge Period Length and Ex-ante futures hedging effectiveness: The case of foreign exchange risk cross hedges. Journal of Futures Markets, 12(2), 163-175.
  • Bhaduri, S. N., & Durai, S. R. (2007). Optimal Hedge Ratio and Hedging Effectiveness of Stock Index Futures: Evidence from India. NSE Research Paper. India: NSE.
  • Bollerslev, T. (1986). Generalized auto regressive conditional hetroskedasticity. Journal of Econometrics, 31(1), 38-57.
  • Bonga-Bonga, L., & Umoetok, E. (2016). The effectiveness of index futures hedging in emerging markets during the crisis period of 2008-2010: Evidence from South Africa. Applied Economics, 48(42), 3999-4018.
  • Brailsford, T. J., & Cusack, A. J. (1997). A Comparison of futures pricing models in a new market: The case of individual share futures. Journal of Futures Markets, 17(5), 515-541.
  • Brailsford, T., Corrigan, K., & Heaney, R. (2001). A comparison of measures of hedging effectiveness: A case study using the Australian all ordinaries share price index futures contract. Journal of Multinational Financial Management, 11(4), 465-481.
  • Brooks, C., & Chong, J. (2001). The cross-currency hedging performance of implied versus statistical forecasting models. Journal of Futures Markets, 21(11), 1043-1069.
  • Brooks, C., Cerny, A., & Miffre, J. (2012). Optimal hedging with higher moments. Journal of Futures Markets, 32(10), 909-944.
  • Butterworth, D., & Holmes, P. (2001). The hedging effectiveness of stock index futures: Evidence for the FTSE-100 and FTSE-mid250 indexes traded in the UK. Applied Financial Economics, 11, 57-68.
  • Carlton, D. (1984). Futures markets: Their purpose, their history, their successes and failures. Journal of Futures Markets, 4(3), 237-271.
  • Castelino, M. G. (1992). Hedge effectiveness: Basis risk and minimum-variance hedging. Journal of Futures Markets, 20(1), 89-103.
  • Chan, L., & Lien, D. (2001). Cash settlement and price discovery in futures market. Quarterly Journal of Business and Economics, 40(3/4), 65-77.
  • Chang, C., McAleer, M., & Tansuchat, R. (2011). Crude Oil Hedging Strategies Using Dynamic Multivariate GARCH. Kier Discussion Paper Series, Kyoto Institute of Economic Research, Discussion Paper No. 743.
  • Chang, E., Chou, R. Y., & Nelling, E. (2000). Market volatility and the demand for hedging in stock index futures. Journal of Futures Markets, 20(2), 105-125.
  • Chen, C. C., & Tsay, W.-J. (2011). A markov regime switching ARMA approach for hedging stock indices. Journal of Futures Markets, 31(2), 165-191.
  • Chen, S. S., Lee, C.-F., & Shrestha, K. (2004). An empirical analysis of the relationship between the hedge ratio and hedging horizon: A simultaneous estimation of the short- and long-run hedge ratios. Journal of Futures Markets, 24(4), 359-386.
  • Chen, S. S., Lee, C.-F., & Shrestha, K. (2001). On a mean generalized semivariance approach to determining the hedge ratio. Journal of Futures Markets, 21(6), 581-598.
  • Chou, W. L., Denis, K. F., & Lee, C. F. (1997). Hedging with the Nikkei index futures: The convential model versus the error correction model. The Quarterly Review of Economics and Finance, 36(4), 495-505.
  • Choudhry, T. (2004). The hedging effectiveness of constant and time-varying hedge ratios using three Pacific Basin stock futures. International Review of Economics & Finance, 13(4), 371-385.
  • Collins, R. A. (2000). The risk management effectiveness of multivariate hedging models in the US soy complex. Journal of Futures Markets, 20(2), 189-204.
  • Dimson, E., & Mussavian, M. (1998). A brief history of market efficiency. European Financial Management, 4(1), 91-104.
  • Ederington, L. H. (1979). The hedging performance of the new futures markets. The Journal of Finance, 34(1), 157-170.
  • Engle, R. (1982). Autoregressive conditional heteroskedasticity with estimates of United Kingdom inflation. Econometrica, 50, 1987-1008.
  • Engle, R. F., & Granger, C. W. (1987). Co-integration and error correction: Representation, estimation, and testing. Econometrica: Journal of the Econometric Society, 251-276.
  • Fama, E. F. (1965). The behavior of stock-market prices. The Journal of Business, 38(1), 34-105.
  • Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. Journal of Finance, 25(2), 383-417.
  • Figlewski, S. (1984). Hedging performance and basis risk in stock index futures. The Journal of Finance, 39(3), 657-669.
  • Floros, C., & Vougas, D. V. (2004). Hedge ratio in Greek stock index futures market. Applied Financial Economics, 14, 1125-1136.
  • Floros, C., & Vougas, D. V. (2006). Hedging effectiveness in Greek stock index futures market, 19992001. International Research Journal of Finance and Economics, 5, 7-18.
  • Garbade, K. D., & Silber, W. L. (1983). Price movement and price discovery in futures and cash markets. The Review of Economis and Statistics, 65(2), 289-297.
  • Geppert, J. M. (1995). A statistical model for the relationship between futures contract hedging effectiveness and investment horizon length. Journal of Futures Markets, 15(5), 507-536.
  • Ghosh, A. (1993). Hedging with stock index futures: Estimation and forecasting with error correction model. Journal of Futures Markets, 13(7), 743-752.
  • Goudarzi, H., & Ramanarayanan, C. S. (2011). Modeling asymmetric Volatility in the Indian Stock Market. International Journal of Business and Management, 6(3), 221-231.
  • Gupta, K., & Singh, B. (2009). Estimating the optimal hedge ratio in Indian equity futures market. Journal of Financial Risk Management, 6(3 & 4), 38-98.
  • Harris, R. D., & Shen, J. (2003). Robust estimation of the optimal hedge ratio. Journal of Futures Markets, 23(8), 799-816.
  • Hatemi-J, A., & Roca, E. (2006). Calculating the optimal hedge ratio: Constant, time-varying and Kalman filter approach. Applied Economic Letters, 13, 293-299.
  • Hemler, M. L., & Longstaff, F. A. (1991). General equilibrium stock index futures prices: Theory and empirical evidence. Journal of Financial and Quantitative Analysis, 26(3), 287-308.
  • Herbst, A. F., McCormack, J. P., & West, E. N. (1987). Investigation of a lead-lag relationship between spot stock indices and their futures contracts. Journal of Futures Markets, 7(4), 373-381.
  • Holmes, P. (1995). Ex ante hedge ratios and the hedging effectiveness of the FTSE-100 stock index futures contracts. Applied Economics Letters, 2, 56-59.
  • Hou, Y., & Li, S. (2013). Hedging performance of Chinese stock index futures: An empirical analysis using wavelet analysis and flexible bivariate GARCH approaches. Pacific-Basin Finance Journal, 24, 109-131.
  • Howard, C. T., & D’Antonio, L. J. (1984). A risk-return measure of hedging effectiveness. Journal of Financial and Quantitative Analysis, 19(1), 101-112.
  • In, F., & Kim, S. (2006). The hedge ratio and the empirical relationship between the stock and futures markets: A new approach using wavelet analysis. The Journal of Business, 79(2), 799-820.
  • Johnson, L. (1960). The theory of hedging and speculation in commodity futures. Review of Economic Studies, 27, 139-151.
  • Kamara, A., & Siegel, A. F. (1987). Optimal hedging in futures markets with multiple delivery specifications. The Journal of Finance, 42(4), 1007-1021.
  • Kamath, R. R., Chakornpipat, R., & Chatrath, A. (1998). Return distribution and the day-of-the-week effects in the stock exchange of Thailand. Journal of Economics and Finance, 22(23), 97-106.
  • Karpoff, J. M. (1987). The relation between price changes and trading volume: A survey. Journal of Financial and Quantitative Analysis, 22(1), 109-126.
  • Kavussanos, M. G., & Nomikos, N. K. (2000). Constant vs. time-varying hedge ratios and hedging efficiency in the BIFFEX market. Transportation Research Part E: Logistics and Transportation Review, 36(4), 229-248.
  • Kawaller, I. G., Koch, P. D., & Koch, T. W. (1987). The temporal price relationship between S&P500 Futures and the S&P500 Index. The Journal of Finance, 42(5), 1309-1329.
  • Kendall, M. G., & Hill, B. A. (1953). The analysis of economic time series part I. prices. Journal of Royal Statistical Society, 96, 11-25.
  • Kenourgios, D., Samitas, A., & Drosos, P. (2008). Hedge ratio estimation and hedging effectiveness: the case of the S&P 500 stock index futures contract. International Journal of Risk Assessment and Management, 9(1/2), 121-134.
  • Khatib, E. Y., & Hatemi-J, A. (2011). Asymmetrical optimal hedge ratio with an application. IAENG Journal of Applied Mathematics, 41(4), 330-333.
  • Kofman, P., & McGlenchy, P. (2005). Structurally sound dynamic index futures hedging. Journal of Futures Markets, 25(12), 1173-1202.
  • Koutmos, G., & Pericli, A. (1998). Dynamic hedging of paper with T bill futures. Journal of Futures Markets, 18(8), 925-938.
  • Kroner, K. F., & Sultan, J. (1993). Time-varying distributions and dynamics hedging with foreign currency futures. The Journal of Financial and Quantitative Analysis, 28(4), 535-551.
  • Lee, H. T., & Yoder, J. K. (2007). A Bivariate Markov regime switching GARCH approach to estimate time varying minimum variance hedge ratios. Applied Economics, 39, 1253-1265.
  • Lien, D. (2005). A Note on the Superiority of the OLS Hedge Ratio. Journal of Futures Markets, 25(11), 1121-1126.
  • Lien, D., & Luo, X. (1994). Multiperiod hedging in the presence of conditional heteroskedasticity. Journal of Futures Markets, 14(8), 927-955.
  • Lien, D., & Tse, Y. K. (2000). A note on the length effect of futures hedging. Advances in Investment Analysis and Portfolio Management, 7(1), 131-143.
  • Lien, D., Tse, Y. K., & Tsui, A. K. (2002). Evaluating the hedging performance of the constant-correlation GARCH model. Applied Financial Economics, 12(11), 791-798.
  • Lypny, G., & Powalla, M. (1998). The hedging effectiveness of DAX futures. European Journal of Finance, 4, 345-355.
  • MacKinlay, A. C., & Ramaswamy, K. (1988). Indexfutures arbitrage and the behavior of stock index futures prices. Review of Financial Studies, 1(2), 137-158.
  • Maharaj, E. A., Moosa, I., Dark, J., & Silvapulle, P. (2008). Wavelet estimation of asymmetric hedge ratios: Does econometric sophistication boost hedg ing effectiveness?. International Journal of Business and Economics, 7(3), 213-230.
  • Martikainen, T., Perttunen, J., & Puttonen, V. (1995). On the dynamics of stock index futures and individual stock returns. Journal of Business Finance & Accounting, 22(1), 87-100.
  • Men, X., & Men, X. (2008). Hedging effectiveness of Hong Kong stock index futures contracts. International Journal of Business and Management, 3(8), 98-108.
  • Moosa, I. (2003). The sensitivity of the optimal hedge ratio to model specification. Finance Letters, 1(1), 15-20.
  • Monoyios, M., & Sarno, L. (2002). Mean reversion in stock index futures markets: A nonlinear analysis. Journal of Futures Markets, 22(4), 285-314.
  • Moschini, G., & Myers, R. J. (2002). Testing for constant hedge ratios in commodity markets: A Multivariate GARCH Approach. Journal of Empirical Finance, 9, 589-603.
  • Myers, R. J. (1991). Estimating time-varying optimal hedge ratios on futures markets. Journal of Futures Markets, 20(1), 73-87.
  • Neal, R. (1996). Direct tests of index arbitrage models. Journal of Financial and Quantitative Analysis, 31(4).
  • Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59, 347-370.
  • Neuberger, A. (1999). Hedging long-term exposures with multiple short-term futures contracts. The Review of Financial Studies, 12(3), 429-459.
  • Park, S. Y., & Jei, S. Y. (2010). Estimation and hedging effectiveness of time-varying hedge ratio: Flexible bivariate Garch approaches. Journal of Futures Markets, 30(1), 71-99.
  • Park, T. H., & Switzer, L. N. (1995). Time-varying distributions and the optimal hedge ratios for stock index futures. Applied Financial Economics, 5, 131-137.
  • Pattarin, F., & Ferretti, R. (2004). The Mib30 index and futures relationship: econometric analysis and implications for hedging. Applied Financial Economics, 14, 1281-1289.
  • Pennings, J. M. E., & Meulenberg, M. T. G. (1997). Hedging efficiency: A futures exchange management approach. Journal of Futures Markets, 17(5), 599-615.
  • Pradhan, K. C. (2011). The hedging effectiveness of stock index futures: Evidence for the S&P CNX nifty index traded in India. South East European Journal of Economics & Business, 6(1), 111-123.
  • Rao, S. V. D. N., & Thakur, S. (2008). Optimal hedge ratio and hedge efficiency: An empirical investigation of hedging in Indian derivatives market. Retrieved from https://www.soa.org/library/monographs/other-monographs/2008/april/mono-2008-mas08-1-thakur.pdf on January 21, 2014.
  • Salles, A. A. (2013). An investigation of some hedging strategies for crude oil market. International Journal of Energy Economics and Policy, 3(1), 51-59.
  • Stein, J. L. (1961). The simultaneous determination of spot and futures prices. The American Economic Review, 51(5), 1012-1025.
  • Stoll, H. R., & Whaley, R. E. (1987). Program trading and expiration-day effects. Financial Analysts Journal, 43(2), 16-28.
  • Stoll, H. R., & Whaley, R. E. (1990). Dynamics of stock index and stock index futures returns. Journal of Financial and Quantitative Analysis, 25(4), 441-468.
  • Sutcliffe, C. M. S. (1993) Stock index futures: Theories and international evidence. Chapman and Hall, London.
  • Theobald, M., & Yallup, P. (2001). Mean reversion and basis dynamics. Journal of Futures Markets, 21(9), 797-818.
  • Wang, Yudong, Chongfeng Wu, and Li Yang (2015). Hedging with futures: Does anything beat the naive hedging strategy?. Management Science, 61(12), 2870-2889.
  • Woking, H. (1953). Futures trading and hedging. American Economic Review, 43, 314-343.
  • Yadav, P. K., & Pope, P. F. (1990). Stock index futures arbitrage: International evidence. Journal of Futures Markets, 10(6), 573-603.
  • Yang, W. J. (2001). M-GARCH Hedge Ratios and Hedging Effectiveness in Australian Futures Markets. Available at SSRN 259968.
  • Yang, M. J., & Lai, Y.-C. (2009). An out-of-sample comparative analysis of hedging performance of stock index futures: Dynamic versus static hedging. Applied Financial Economics, 19, 1059-1072.
  • Yang, W., & Allen, D. E. (2004). Multivariate GARCH hedge ratios and hedging effectiveness in Australian futures markets. Accounting and Finance, 45, 301-321.

Abstract Views: 19

PDF Views: 0




  • Testing the Hedging Effectiveness of Index and Individual Stock Futures Contracts:Evidence from India

Abstract Views: 19  |  PDF Views: 0

Authors

Mandeep Kaur
Department of Management, I. K. Gujral Punjab Technical University, Kapurthala, Punjab, India
Kapil Gupta
Department of Management, I. K. Gujral Punjab Technical University, Kapurthala, Punjab, India

Abstract


Present study attempts to estimate hedging effectiveness in Indian equity futures market using NIFTY50 index futures and its 17 composite stock futures (out of 50 stocks). The study uses near month futures contracts from their respective date of inception until March 31, 2017. The study applies eight methods, proposed in the literature, to estimate optimal hedge ratio namely; Naïve, Ederington’s OLS, ARMA-OLS, VAR, VECM, GARCH, EGARCH, and TARCH. It is observed that OLS hedge ratio provides highest hedging effectiveness, whereas lowest hedging effectiveness is given by Naïve and time-varying models. The above observations imply that constant hedging is more efficient than dynamic hedging which is consistent with the findings of Wang et al (2015) and Bonga and Umoetok (2016).

Keywords


Equity Futures Market, GARCH, Hedging Effectiveness, OLS, Optimal Hedge Ratio.

References