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Abstract    

Objectives: Range and bearing measurements of underwater vehicle is obtained by helicopter which uses 
dunking sonar. Considering range and bearing measurements the target position is identified and target motion 
parameters are available to guide the weapon on the target vehicle.  
Methods/Statistical analysis: Target motion parameters are finally found by using Extended Kalman filter. 
Present weapon parameters are initial turning angle, straight run distance and many other which are obtained 
using the known parameters like speed, course of the helicopter and the target motion parameters. 
Findings: Results of Monte Carlo simulation are shown which gives the better performances of the algorithm for 
typical scenarios using Matlab. 
Application/Improvements: The proposed algorithm can be used for undersea sonar based applications.  
Keywords: Estimation, stochastic, bearing, line of sight, Kalman filter, sonar, weapon 

1. Introduction 

    In two dimensional scenario, Target Motion Analysis (TMA) is generally used in underwater environment. 
Dunking sonar is positioned into the sea from a helicopter in hovering mode to find out the path of the target 
submarine in sea water. The sonar in active mode finds out target bearing and range measurements. These are 
passed on to the helicopter signal processing system through a cable. Target and observer both are moving in a 
straight but in their respective directions. Observer estimates the target motion parameters like range, bearing 
and speed of the target to process the measurements [1-4].  
    Dunking sonar system consists of simulator which is an active mode target motion analysis system. The 
weapon to be induced on the target, and the sonar, both are placed in the helicopter. Helicopter is in hovering 
mode, sonar is sent to the sea to get the target position. Since the sonar cannot be able to give the depth of the 
target from the surface it is assumed that the sonar and target are on the same plane. Due to noisy environment 
of the SONAR data from different sensors like range bearing elevation are also noisy. These noisy measurements 
often results in nonlinear states and measurements. If the measurements and states are linear, kalman filter is 
used for prediction and estimation of states. Kalman filter for estimation and prediction is mainly used 
between1959-1961. Kalman filter is defined as filtering technique used for linear quadratic estimations 
combined with the series of noisy measurements, whereas Sonar environment is noisy and nonlinear in 
particular[5-7]. Linearized Kalman filter transforms polar measurements into Cartesian co-ordinates whereas the 
extended Kalman filter works directly on polar coordinates. Using the sonar signal processing system in 
helicopter measurements,  Recent study by S.T. pork and L.E. Lee on above stated versions of kalman filter tells 
that both performs well. This paper deals with EKF all through the paper [3-6]. So a filtering technique for 
nonlinear system was adapted which is a nonlinear system having linear approximation called Extended Kalman 
Filter (EKF). 

2. Mathematical modeling 

Xs (k) is state vector of the target 
XS(k) = [ẋ(k)ẏ(k)Rx(k)Ry(k)]T (1) 
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 ẋ(k) and ẏ(k) are target velocity components and Rx(k) and Ry(k) are range components. 
𝑋𝑠(𝑘 + 1) =  𝛷(𝑘 + 1 𝑘)𝑋𝑠⁄ (𝑘) + 𝑏(𝑘 + 1) +𝜔(𝑘) (2) 
Where 𝜔(𝑘) is the plant noise having zero mean b(k+1)  is deterministic vector and   
𝛷(𝑘 + 1/𝑘) is the transient matrix. 
Transient matrix is given by 
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Sample time elapse between the measurements is t. 
Deterministic matrix is given by 
𝑏(𝑘 + 1) = [0  0 − [𝑥0(𝑘 + 1) + 𝑥0 (𝑘)] − [𝑦0(𝑘 + 1) + 𝑦0 (𝑘)]𝑇  (4) 
True north convention is followed by all angles to reduce mathematical complexity, x0 and y0 are components of 
ownship position respectively. Z (k) is measurement vector and it is given by 
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Where Bm(k)  is the bearing measurements and Rm is the range measurement. 
They are defined as 
𝐵𝑚(𝑘) = 𝐵(𝑘) + 𝛾(𝑘) (6) 
𝑅𝑚(𝑘) = 𝑅(𝑘) + 𝜂(𝑘) (7) 
Actual bearing is B (k) and actual range is R (k) 

𝐵(𝑘) =   𝑡𝑎𝑛−1 �𝑅𝑥(𝑘)
𝑅𝑦(𝑘)� (8) 

𝑅(𝑘) =  �𝑅𝑥2(k) + 𝑅𝑦2(k) (9) 

The noises η (k) and γ (k) are induced which are uncorrelated and Gaussian.  
By using above equations, measurement equation is given by 
𝑍(𝑘) = 𝐻(𝑘)𝑋𝑠(𝑘) + 𝜉(𝑘) (10) 

Here 
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Assume the plant and measurement noise are uncorrelated to each other. The predicted covariance is given by 
𝑃(𝑘 + 1 𝑘) = Ø(𝑘 + 1 𝑘)𝑃(𝑘 𝑘)Ø𝑇⁄⁄⁄ (𝑘 + 1 𝑘) + 𝑄(𝑘 + 1)⁄  (12) 
Where, Q is the covariance of plant noise  
Kalman gain is given as 
𝐺(𝑘 + 1) = 𝑃(𝑘 + 1 𝑘)𝐻𝑇(𝑘 + 1)[𝑟(𝐾 + 1)  +𝐻(𝑘 + 1)𝑃(𝑘 + 1 𝑘)𝐻𝑇(𝑘 + 1)]⁄ −1⁄  (13) 
Where, r(k+1) is said to be input covariance matrix of error covariance.  
Thus the state estimation and its error in covariance are given as 
𝑋(𝑘 + 1 𝑘 + 1) = 𝑋(𝑘 + 1 𝑘) + 𝐺(𝑘 + 1)[𝑍(𝑘 + 1) − Z�(k + 1)]⁄⁄  (14) 
𝑃(𝑘 + 1 𝑘 + 1) = [1 − 𝐺(𝑘 + 1)𝐻(𝑘 + 1)𝑃(𝑘 1 𝑘)⁄⁄  (15) 

3. Simulator 

Simulator accepts the inputs given and simulates the observer and target position. It generates range and 
bearing for each second and induces Gaussian noise in each measurement of range and bearing. Target 
parameters are range, course, bearing, elevation and the observer parameters are course and speed which are 
given as inputs to the simulator. Sigma_b and sigma_r are errors assumed in bearing and range respectively is 
also given as inputs. Initially observer is considered to be at origin and the angles are measured with respect to 
true north. 
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Figure 1. 2D simulator with inputs and outputs 

 
Where B is bearing R is range S is speed (B,S,R) are the target parameters. C is course related to observer.  

MR, MB is measured range and bearings and TB,TR are true bearing and ranges. 

3.1. Observer position 
 Observer position is initially taken as origin and is shown as 

Figure 2. Observer position in motion 

 

O1 and O2 are the observer initial and next position after a time ts moving with a velocity v0. (x0,y0) are 
observer initial coordinates and ocr is the angle made with north. 
sin(𝑜𝑐𝑟) = 𝑥0

𝑣0
  

cos(𝑜𝑐𝑟) =  
𝑦0
𝑣0

 

Change in observer position for each second is found and added to its previous position. 
𝑑𝑥0 = 𝑣0 ∗ sin(𝑜𝑐𝑟) ∗ 𝑡𝑠  
𝑑𝑦0 = 𝑣0 ∗ cos(𝑜𝑐𝑟) ∗ 𝑡𝑠 
dx0  and dy0  are changes in observer position after a time interval ts.. New position of the observer becomes 
𝑥0 = 𝑑𝑥0 + 𝑥0 
𝑦0 = 𝑑𝑦0 + 𝑦0 
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3.2. Initial target position 

Figure 3. Initial observer and target position 

 
From the input bearing and range measurements initial target position is known using following equations 

𝑥𝑡 = 𝑟𝑎𝑛𝑔𝑒 ∗ sin(𝑏𝑒𝑎𝑟𝑖𝑛𝑔) = 𝑅 ∗ sin(𝐵) 
𝑦𝑡 = 𝑟𝑎𝑛𝑔𝑒 ∗ cos(𝑏𝑒𝑎𝑟𝑖𝑛𝑔) = 𝑅 ∗ cos (𝐵)  
Where (xt,yt) is the position of  target with respect to origin. 
When the target moves with a velocity vt,dxt and dyt are the changes of target position in x and y direction for 
timets seconds. Target course is given by tcr. 

Figure 4. Target position in motion 

 

                                                                                     Figure 5. Simulated and estimated range 
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                                                                                     Figure 6. Simulated and estimated target 

 

Figure 7. Simulated and estimated target velocity 

 

Figure 8. Simulated and estimated target course 
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Figure 9. Simulated and estimated target elevation 

 

                                                                     Figure 10. Error in range estimate 

 

Figure 11. Error in bearing estimate 
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Figure 12. Time versus speed error 

 

Figure 13. Error in course estimate 

 

Figure 14. Simulated target co ordinates 
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Figure 15. Error in elevation estimate 

 
Figure 16. Simulated observer coordinates 
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Figure 17. Simulated and estimated range 

 

Figure 18. Simulated and estimated target 

 

Figure 19. Simulated and estimated target velocity 
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Figure 20. Simulated and estimated target course 

 

Figure 21. Simulated and estimated target elevation 

 

Figure 22. Error in range estimate 
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Figure 23. Error in bearing estimate 

 

Figure 24. Time versus speed error 

 

Figure 25. Error in course estimate 
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Figure 26. Error in elevation estimate 

 

Figure 27. Simulated target coordinates 

 

Figure 28. Simulated observer coordinates 
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𝑑𝑦𝑡 =  𝑣𝑡 ∗ cos(𝑡𝑐𝑟) ∗ 𝑡𝑠 
Now the new target position after time tsis given as 
𝑥𝑡 = 𝑑𝑥𝑡 + 𝑥𝑡  

𝑦𝑡 = 𝑑𝑦𝑡 + 𝑦𝑡 
Zero Mean Gaussian noise is nowadded to range and bearing measurements and the standard deviations are 
sigma_r and sigma_b. 

True bearing = 𝑡𝑎𝑛−1
𝑥𝑡 − 𝑥0
𝑦𝑡 − 𝑦0

 

𝑡𝑟𝑢𝑒𝑟𝑎𝑛𝑔𝑒 =  �(𝑥𝑡 − 𝑥0)2 + (𝑦𝑡 − 𝑦0)2 
Now the measured range and bearings are given by 
Measured range= true range+sigma_r 
Measured bearing= true bearing + sigma_b 

4. Implementation of the algorithm 

The target velocity components are computed with the use of first and second measurement sets of range 
and bearing and the Kalman filter starts its computation from the second measurement itself. 
Target state vector has its initial estimate which is X(2/2) 
X(2/2)  = [𝑡𝑒𝑟𝑚1  𝑡𝑒𝑟𝑚2  𝑅𝑚(2)𝑠𝑖𝑛𝐵𝑚(2)]𝑇 (16) 
Term1 and term2 are defined by 
𝑡𝑒𝑟𝑚1 = 𝑅𝑚(2)𝑠𝑖𝑛𝐵𝑚(2) − 𝑅𝑚(1)𝑠𝑖𝑛𝐵𝑚(1)/t 
𝑡𝑒𝑟𝑚2 = 𝑅𝑚(2)𝑐𝑜𝑠𝐵𝑚(2) − 𝑅𝑚(1)𝑐𝑜𝑠𝐵𝑚(1)/t (17) 
Uniform distribution of initial estimate X(2/2) is assumed. Now the initial covariance diagonal matrix elements is 
given by  

𝑃00(2 2) = 4∗�̇�2(2 2)⁄
12

�   (18) 

𝑃11(2 2) = 4∗�̇�2(2 2)⁄
12

�   (19) 

𝑃22(2 2) = 4∗𝑅𝑥2(2 2)⁄
12

�   (20) 

𝑃33(2 2) =
4∗𝑅𝑦2(2 2)⁄

12
�   (21) 

From the estimated state vector target motion parameters are calculated viz .,range, course, bearing and speed 
of the target. 

𝑅(𝑘) =  �𝑅𝑥2(k) + 𝑅𝑦2(k) 

𝐵(𝑘) =   𝑡𝑎𝑛−1 �
𝑅𝑥(𝑘)
𝑅𝑦(𝑘)� 

𝐶(𝑘) = 𝑡𝑎𝑛−1 �
�̇�(𝑘)
�̇�(𝑘)� 

𝐵(𝑘) = ��̇�(𝑘)2 + 𝑦 ̇(𝑘)2  (22) 

5. Simulation and results 

Table 1. Input Scenarios for Observer and Target 

 
Scenario 

 

 
Target range 

 

 
Target bearing 

 

 
Target Course 

 
Target speed 

 
Observer course 

 
Observer speed 

1 3000 45 255 10 NA 0 

2 4000 135 315 8.5 NA 0 
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The velocity of sound in sea water is 1500m/s.  As the maximum range of target is 3000m (Table 1), the time 
taken for the transmitted pulse to reach and come back to observer is (6000/1500) 4seconds. Let the maximum 
noise (3σ) in the range and bearing measurements be 10 and 20m respectively.  The scenarios are shown in Table 
1 and depicted in the figures. Figures 1 to 16 represent scenario 1 and Figures 17 to 28 shows simulation of 
scenario 2. Table 2 presents the output scenario for the corresponding input scenarios. 
Sigma_b  =  0.33 
Sigma_r=  7 
X0 =  0 
Y0 = 0 
(X0,Y0) are the initial position of observer. 

Table 2. Outputs scenario for the corresponding Input scenarios 

 
Scenario 

 

 
Resultant 
Bearing 

 

 
Predicted 
bearing 

 
Resultant range 

 
Predicted 

range 

 
Resultant 

course 

 
Predicted 

course 

 
speed 

 
Predicted 

speed 

1 323 323 1.729201e+003 1730 255 255 10 10 

2 315 315 2.098661e+003 2099.7 315 315 8.5 9 

6. Conclusion 

 The studied scenarios show that the algorithm is good for target tracking from a hovering helicopter 
through which sonar is sent to track the target. Hence it is also used in underwater applications. Extended 
Kalman filter is used in this algorithm to estimate range and bearing measurements of underwater targets. It is 
observed from taken scenarios that the errors are small and can be settled down easily. 
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