Open Access Open Access  Restricted Access Subscription Access

Solar Thermochemical Hydrogen Production via Terbium Oxide Based Redox Reactions


Affiliations
1 Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
 

The computational thermodynamic modeling of the terbium oxide based two-step solar thermochemical water splitting (Tb-WS) cycle is reported. The 1st step of the Tb-WS cycle involves thermal reduction of TbO2 into Tb and O2, whereas the 2nd step corresponds to the production of H2 through Tb oxidation by water splitting reaction. Equilibrium compositions associated with the thermal reduction and water splitting steps were determined via HSC simulations. Influence of oxygen partial pressure in the inert gas on thermal reduction of TbO2 and effect of water splitting temperature (TL) on Gibbs free energy related to the H2 production step were examined in detail.The cycle (ηcycle) and solar-to-fuel energy conversion (ηsolar-to-fuel) efficiency of the Tb-WS cycle were determined by performing the second-law thermodynamic analysis. Results obtained indicate that ηcycle and ηsolar-to-fuel increase with the decrease in oxygen partial pressure in the inert flushing gas and thermal reduction temperature (TH). It was also realized that the recuperation of the heat released by the water splitting reactor and quench unit further enhances the solar reactor efficiency. At TH= 2280 K, by applying 60% heat recuperation, maximum ηcycle of 39.0% and ηsolar-to-fuel of 47.1% for the Tb-WS cycle can be attained.
User
Notifications
Font Size

Abstract Views: 72

PDF Views: 0




  • Solar Thermochemical Hydrogen Production via Terbium Oxide Based Redox Reactions

Abstract Views: 72  |  PDF Views: 0

Authors

Rahul Bhosale
Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
Anand Kumar
Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
Fares AlMomani
Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar

Abstract


The computational thermodynamic modeling of the terbium oxide based two-step solar thermochemical water splitting (Tb-WS) cycle is reported. The 1st step of the Tb-WS cycle involves thermal reduction of TbO2 into Tb and O2, whereas the 2nd step corresponds to the production of H2 through Tb oxidation by water splitting reaction. Equilibrium compositions associated with the thermal reduction and water splitting steps were determined via HSC simulations. Influence of oxygen partial pressure in the inert gas on thermal reduction of TbO2 and effect of water splitting temperature (TL) on Gibbs free energy related to the H2 production step were examined in detail.The cycle (ηcycle) and solar-to-fuel energy conversion (ηsolar-to-fuel) efficiency of the Tb-WS cycle were determined by performing the second-law thermodynamic analysis. Results obtained indicate that ηcycle and ηsolar-to-fuel increase with the decrease in oxygen partial pressure in the inert flushing gas and thermal reduction temperature (TH). It was also realized that the recuperation of the heat released by the water splitting reactor and quench unit further enhances the solar reactor efficiency. At TH= 2280 K, by applying 60% heat recuperation, maximum ηcycle of 39.0% and ηsolar-to-fuel of 47.1% for the Tb-WS cycle can be attained.