Open Access Open Access  Restricted Access Subscription Access

Symmetry Analysis of Gait between Left and Right Limb using Cross-Fuzzy Entropy


Affiliations
1 School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China
2 Information Technology Research Centre, Nanjing Sport Institute, Nanjing 210014, China
 

The purpose of this paper is the investigation of gait symmetry problem by using cross-fuzzy entropy (C-FuzzyEn), which is a recently proposed cross entropy that has many merits as compared to the frequently used cross sample entropy (C-SampleEn). First, we used several simulation signals to test its performance regarding the relative consistency and dependence on data length. Second, the gait time series of the left and right stride interval were used to calculate the C-FuzzyEn values for gait symmetry analysis. Besides the statistical analysis, we also realized a support vector machine (SVM) classifier to perform the classification of normal and abnormal gaits.The gait dataset consists of 15 patients with Parkinson’s disease (PD) and 16 control (CO) subjects. The results show that the C-FuzzyEn values of the PD patients’ gait are significantly higher than that of the CO subjects with a 𝑝 value of less than 10−5, and the best classification performance evaluated by a leave-one-out (LOO) cross-validation method is an accuracy of 96.77%. Such encouraging results imply that the C-FuzzyEn-based gait symmetry measure appears as a suitable tool for analyzing abnormal gaits.
User
Notifications
Font Size

Abstract Views: 96

PDF Views: 1




  • Symmetry Analysis of Gait between Left and Right Limb using Cross-Fuzzy Entropy

Abstract Views: 96  |  PDF Views: 1

Authors

Yi Xia
School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China
Qiang Ye
Information Technology Research Centre, Nanjing Sport Institute, Nanjing 210014, China
Qingwei Gao
School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China
Yixiang Lu
School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China
Dexiang Zhang
School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China

Abstract


The purpose of this paper is the investigation of gait symmetry problem by using cross-fuzzy entropy (C-FuzzyEn), which is a recently proposed cross entropy that has many merits as compared to the frequently used cross sample entropy (C-SampleEn). First, we used several simulation signals to test its performance regarding the relative consistency and dependence on data length. Second, the gait time series of the left and right stride interval were used to calculate the C-FuzzyEn values for gait symmetry analysis. Besides the statistical analysis, we also realized a support vector machine (SVM) classifier to perform the classification of normal and abnormal gaits.The gait dataset consists of 15 patients with Parkinson’s disease (PD) and 16 control (CO) subjects. The results show that the C-FuzzyEn values of the PD patients’ gait are significantly higher than that of the CO subjects with a 𝑝 value of less than 10−5, and the best classification performance evaluated by a leave-one-out (LOO) cross-validation method is an accuracy of 96.77%. Such encouraging results imply that the C-FuzzyEn-based gait symmetry measure appears as a suitable tool for analyzing abnormal gaits.