Open Access Open Access  Restricted Access Subscription Access

Extended-Spectrum Beta-Lactamase and Ampicillin Class C Beta‑Lactamase-producing Escherichia Coli From Food Animals:A Review


Affiliations
1 Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Chulalongkorn University, Bangkok 10330, Thailand
2 Department of Veterinary Physiology and Biochemistry, University of Maiduguri, P.M.B 1069 Maiduguri, Borno,, Nigeria
3 Department of Veterinary Microbiology, University of Maiduguri, P.M.B 1069 Maiduguri, Borno, Nigeria
4 Department of Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
5 Department of Veterinary Public Health and Preventive Medicine, University of Maiduguri, P.M.B. 1069, Maiduguri, Borno, Nigeria
 

Antimicrobial resistance has gained global notoriety due to its public health concern, the emergence of multiple drugresistant bacteria, and lack of new antimicrobials. Extended-spectrum beta-lactamase (ESBL)/ampicillin Class C (AmpC)- producing Escherichia coli and other zoonotic pathogens can be transmitted to humans from animals either through the food chain, direct contact or contamination of shared environments. There is a surge in the rate of resistance to medically important antibiotics such as carbapenem, ESBL, aminoglycosides, and fluoroquinolones among bacteria of zoonotic importance. Factors that may facilitate the occurrence, persistence and dissemination of ESBL/AmpC-Producing E. coli in humans and animal includes; 1). o ral administration of antimicrobials to humans primarily (by physician and health care providers) and secondarily to animals, 2). importation of parent stock and day-old chickens, 3). farm management practice and lack of water acidification in poultry, 4). contamination of feed, water and environment, 5). contamination of plants with feces of animals. Understanding these key factors will help reduce the level of resistance, thereby boosting the therapeutic effectiveness of antimicrobial agents in the treatment of animal and human infections. This review highlights the occurrence, risk factors, and public health importance of ESBL/AmpC-beta-lactamase producing E. coli isolated from livestock.

Keywords

Antimicrobial Resistance, Escherichia coli, Extended-Spectrum Beta-Lactamase/Ampicillin Class C.
User
Notifications
Font Size

  • Cantón R, Novais A, Valverde A, Machado E, Peixe L, Baquero F, et al. Prevalence and spread of extended-spectrumbeta-lactamase-producing Enterobacteriaceae in Europe. Clin Microbiol Infect 2008;14 Suppl 1:144-53.
  • Coque TM, Baquero F, Canton R. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveill 2008; 13:19044.
  • Rodríguez-Baño J, Alcalá JC, Cisneros JM, Grill F, Oliver A, Horcajada JP, et al. Community infections caused by extended-spectrum beta-lactamase-producing Escherichia coli. Arch Intern Med 2008; 168:1897-902.
  • Horton RA, Randall LP, Snary EL, Cockrem H, Lotz S, Wearing H, et al. Fecal carriage and shedding density of CTX-M extended-spectrum {beta}-lactamase-producing Escherichia coli in cattle, chickens, and pigs: Implications for environmental contamination and food production. Appl Environ Microbiol 2011;77:3715-9.
  • Geser N, Stephan R, Hächler H. Occurrence and characteristics of extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae in food-producing animals, minced meat and raw milk. BMC Vet Res 2012;8:21.
  • Boonyasiri A, Tangkoskul T, Seenama C, Saiyarin J, Tiengrim S, Thamlikitkul V, et al. Prevalence of antibioticresistant bacteria in healthy adults, foods, food animals, and the environment in selected areas in Thailand. Pathog Glob Health 2014;108:235-45.
  • Duan RS, Sit TH, Wong SS, Wong RC, Chow KH, Mak GC, et al. Escherichia coli producing CTX-M beta-lactamases in food animals in Hong Kong. Microb Drug Resist 2006;12:145-8.
  • Meunier D, Jouy E, Lazizzera C, Kobisch M, Madec JY. CTX-M-1- and CTX-M-15-type beta-lactamases in clinical Escherichia coli isolates recovered from food-producing animals in France. Int J Antimicrob Agents 2006;28:402-7.
  • Liu JH, Wei SY, Ma JY, Zeng ZL, Lü DH, Yang GX, et al. Detection and characterization of CTX-M and CMY-2 beta-lactamases among Escherichia coli isolates from farm animals in Guangdong province of China. Int J Antimicrob Agents 2007;29:576-81.
  • Pietsch M, Eller C, Wendt C, Holfelder M, Falgenhauer L, Fruth A, et al. Molecular characterization of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates from hospital and ambulatory patients in Germany. Vet Microbiol 2017;200:130-7.
  • Michael GB, Kaspar H, Siqueira AK, de Freitas Costa E, Corbellini LG, Kadlec K, et al. Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates collected from diseased food-producing animals in the GERM-vet monitoring program 2008-2014. Vet Microbiol 2017;200:142-50.
  • Norizuki C, Kawamura K, Wachino JI, Suzuki M, Nagano N, Kondo T, et al. Detection of Escherichia coli producing CTX-M-1-group extended-spectrum β-lactamases from pigs in Aichi Prefecture, Japan, between 2015 and 2016. Jpn J Infect Dis 2018;71:33-8.
  • Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M β-lactamases: Temporal and geographical shifts in genotype. J Antimicrob Chemother 2017;72:2145-55.
  • Davies SC, Fowler T, Watson J, Livermore DM, Walker D. Annual report of the chief medical officer: Infection and the rise of antimicrobial resistance. Lancet 2013;381:1606-9.
  • Bauernfeind A, Casellas JM, Goldberg M, Holley M, Jungwirth R, Mangold P, et al. A new plasmidic cefotaximase from patients infected with Salmonella Typhimurium. Infection 1992;20:158-63.
  • Bauernfeind A, Grimm H, Schweighart S. A new plasmidic cefotaximase in a clinical isolate of Escherichia coli. Infection 1990;18:294-8.
  • Woerther PL, Burdet C, Chachaty E, Andremont A. Trends in human fecal carriage of extended-spectrum β-lactamases in the community: Toward the globalization of CTX-M. Clin Microbiol Rev 2013;26:744-58.
  • Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis 2013;13:1057-98.
  • Hawkey PM. Multidrug-resistant gram-negative bacteria: A product of globalization. J Hosp Infect 2015;89:241-7.
  • Bitrus AA, Chuanchuen R, Luangtongkum T. Emergence of colistin resistance in extended-spectrum beta-lactamase producing Enterobacteriaceae isolated from food animals and its public health implication: A review. J Adv Vet Anim Res 2018;5:1-11.
  • Robinson TP, Wertheim HF, Kakkar M, Kariuki S, Bu D, Price LB, et al. Animal production and antimicrobial resistance in the clinic. Lancet 2016;387:e1-3.
  • Zheng H, Zeng Z, Chen S, Liu Y, Yao Q, Deng Y, et al. Prevalence and characterization of CTX-M β-lactamases amongst Escherichia coli isolates from healthy food animals in China. Int J Antimicrob Agents 2012;39:305-10.
  • Stokes MO, Cottell JL, Piddock LJ, Wu G, Wootton M, Mevius DJ, et al. Detection and characterization of pCT-like plasmid vectors for blaCTX-M-14 in Escherichia coli isolates from humans, turkeys and cattle in England and Wales. J Antimicrob Chemother 2012;67:1639-44.
  • Overdevest I, Willemsen I, Rijnsburger M, Eustace A, Xu L, Hawkey P, et al. Extended-spectrum β-lactamase genes of Escherichia coli in chicken meat and humans, the Netherlands. Emerg Infect Dis 2011;17:1216-22.
  • Doi Y, Paterson DL, Egea P, Pascual A, López-Cerero L, Navarro MD, et al. Extended-spectrum and CMY-type beta-lactamase-producing Escherichia coli in clinical samples and retail meat from Pittsburgh, USA and Seville, Spain. Clin Microbiol Infect 2010;16:33-8.
  • Lazarus B, Paterson DL, Mollinger JL, Rogers BA. Do human extraintestinal Escherichia coli infections resistant to expanded-spectrum cephalosporins originate from food-producing animals? A systematic review. Clin Infect Dis 2015;60:439-52.
  • de Been M, Lanza VF, de Toro M, Scharringa J, Dohmen W, Du Y, et al. Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLoS Genet 2014;10:e1004776.
  • Hunter PA, Dawson S, French GL, Goossens H, Hawkey PM, Kuijper EJ, et al. Antimicrobial-resistant pathogens in animals and man: Prescribing, practices and policies. J Antimicrob Chemother 2010;65 Suppl 1:i3-17.
  • Ho PL, Lo WU, Yeung MK, Li Z, Chan J, Chow KH, et al. Dissemination of pHK01-like incompatibility group incFII plasmids encoding CTX-M-14 in Escherichia coli from human and animal sources. Vet Microbiol 2012;158:172-9.
  • Nakane K, Kawamura K, Goto K, Arakawa Y. Long-term colonization by bla (CTX-M)-harboring Escherichia coli in healthy Japanese people engaged in food handling. Appl Environ Microbiol 2016;82:1818-27.
  • Zhang QQ, Ying GG, Pan CG, Liu YS, Zhao JL. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol 2015;49:6772-82.
  • Zhang J, Zheng B, Zhao L, Wei Z, Ji J, Li L, et al. Nationwide high prevalence of CTX-M and an increase of CTX-M-55 in Escherichia coli isolated from patients with communityonset infections in Chinese county hospitals. BMC Infect Dis 2014;14:659.
  • Ma J, Liu JH, Lv L, Zong Z, Sun Y, Zheng H, et al. Characterization of extended-spectrum β-lactamase genes found among Escherichia coli isolates from duck and environmental samples obtained on a duck farm. Appl Environ Microbiol 2012;78:3668-73.
  • Carattoli A. Plasmids in gram-negatives: Molecular typing of resistance plasmids. Int J Med Microbiol 2011;301:654-8.
  • Ewers C, Bethe A, Semmler T, Guenther S, Wieler LH. Extended-spectrum β-lactamase-producing and ampC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: A global perspective. Clin Microbiol Infect 2012;18:646-55.
  • Nicolas-Chanoine MH, Bertrand X, Madec JY. Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev 2014;27:543-74.
  • van Hall MA, Dierikx CM, Stuart JC, Voets GM, van den Munckhof MP, van Essen-Zandbergen A, et al. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infect 2011;17:873-80.
  • Madec JY, Haenni M, Métayer V, Saras E, NicolasChanoine MH. High prevalence of the animal-associated blaCTX-M-1 IncI1/ST3 plasmid in human Escherichia coli isolates. Antimicrob Agents Chemother 2015;59:5860-1.
  • Hartmann A, Locatelli A, Amoureux L, Depret G, Jolivet C, Gueneau E, et al. Occurrence of CTX-M producing Escherichia coli in soils, cattle, and farm environment in France (Burgundy Region). Front Microbiol 2012;3:83.
  • Rao L, Lv L, Zeng Z, Chen S, He D, Chen X, et al. Increasing prevalence of extended-spectrum cephalosporinresistant Escherichia coli in food animals and the diversity of CTX-M genotypes during 2003-2012. Vet Microbiol 2014;172:534-41.
  • Liebana E, Batchelor M, Hopkins KL, Clifton-Hadley FA, Teale CJ, Foster A, et al. Longitudinal farm study of extendedspectrum beta-lactamase-mediated resistance. J Clin Microbiol 2006;44:1630-4.
  • Liebana E, Carattoli A, Coque TM, Hasman H, Magiorakos AP, Mevius D, et al. Public health risks of enterobacterial isolates producing extended-spectrum β-lactamases or ampC β-lactamases in food and food-producing animals: An EU perspective of epidemiology, analytical methods, risk factors, and control options. Clin Infect Dis 2013;56:1030-7.
  • Ewers C, Grobbel M, Bethe A, Wieler LH, Guenther S. Extended-spectrum beta-lactamases-producing gram-negative bacteria in companion animals: Action is clearly warranted! Berl Munch Tierarztl Wochenschr 2011;124:94-101.
  • Ewers C, Grobbel M, Stamm I, Kopp PA, Diehl I, Semmler T, et al. Emergence of human pandemic O25:H4-ST131 CTX-M-15 extended-spectrum-beta-lactamase-producing Escherichia coli among companion animals. J Antimicrob Chemother 2010;65:651-60.
  • Moodley A, Guardabassi L. Transmission of incN plasmids carrying blaCTX-M-1 between commensal Escherichia coli in pigs and farm workers. Antimicrob Agents Chemother 2009;53:1709-11.
  • Timofte D, Maciuca IE, Evans NJ, Williams H, Wattret A, Fick JC, et al. Detection and molecular characterization of Escherichia coli CTX-M-15 and Klebsiella pneumoniae SHV-12 β-lactamases from bovine mastitis isolates in the United Kingdom. Antimicrob Agents Chemother 2014;58:789-94.
  • Hammerum AM, Larsen J, Andersen VD, Lester CH, Skovgaard Skytte TS, Hansen F, et al. Characterization of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli obtained from Danish pigs, pig farmers and their families from farms with high or no consumption of third or fourth-generation cephalosporins. J Antimicrob Chemother 2014;69:2650-7.
  • Urumova V. Extended spectrum beta-lactamase producing animal Enterobacteriaceae isolates as potential risk to public health-review. Rev Méd Vét 2015;1:7-8.
  • Huijbers PM, Graat EA, Haenen AP, van Santen MG, van Essen-Zandbergen A, Mevius DJ, et al. Extended-spectrum and ampC β-lactamase-producing Escherichia coli in broilers and people living and/or working on broiler farms: Prevalence, risk factors and molecular characteristics. J Antimicrob Chemother 2014;69:2669-75.
  • Leistner R, Meyer E, Gastmeier P, Pfeifer Y, Eller C, Dem P, et al. Risk factors associated with the community-acquired colonization of extended-spectrum beta-lactamase (ESBL) positive Escherichia coli. An exploratory case-control study. PLoS One 2013;8:e74323.
  • Wang Y, He T, Han J, Wang J, Foley SL, Yang G et al. Prevalence of ESBLs and PMQR genes in fecal Escherichia coli isolated from the non-human primates in six zoos in China. Vet Microbiol 2012;159:53-9.
  • Wallensten A, Hernandez J, Ardiles K, González-Acuña D, Drobni M, Olsen B, et al. Extended-spectrum beta-lactamases detected in Escherichia coli from gulls in Stockholm, Sweden. Infect Ecol Epidemiol 2011;1:7030.
  • Literak I, Dolejska M, Janoszowska D, Hrusakova J, Meissner W, Rzyska H, et al. Antibiotic-resistant Escherichia coli bacteria, including strains with genes encoding the extended-spectrum beta-lactamase and qnrS, in waterbirds on the Baltic sea coast of Poland. Appl Environ Microbiol 2010;76:8126-34.
  • Literak I, Dolejska M, Radimersky T, Klimes J, Friedman M, Aarestrup FM, et al. Antimicrobial-resistant fecal Escherichia coli in wild mammals in central Europe: Multiresistant Escherichia coli producing extended-spectrum beta-lactamases in wild boars. J Appl Microbiol 2010;108:1702-11.
  • Guenther S, Grobbel M, Lübke-Becker A, Goedecke A, Friedrich ND, Wieler LH, et al. Antimicrobial resistance profiles of Escherichia coli from common European wild bird species. Vet Microbiol 2010;144:219-25.
  • Smet A, Martel A, Persoons D, Dewulf J, Heyndrickx M, Herman L, et al. Broad-spectrum β-lactamases among Enterobacteriaceae of animal origin: Molecular aspects, mobility and impact on public health. FEMS Microbiol Rev 2010;34:295-316.
  • Wieler LH, Ewers C, Guenther S, Walther B, Lübke-Becker A. Methicillin-resistant staphylococci (MRS) and extended-spectrum beta-lactamases (ESBL)-producing Enterobacteriaceae in companion animals: Nosocomial infections as one reason for the rising prevalence of these potential zoonotic pathogens in clinical samples. Int J Med Microbiol 2011;301:635-41.
  • Bonnet R. Growing group of extended-spectrum beta-lactamases: The CTX-M enzymes. Antimicrob Agents Chemother 2004;48:1-4.
  • Nagano N, Endoh Y, Nagano Y, Toyama M, Matsui M, Shibayama K, et al. First report of OXA-48 carbapenemaseproducing Klebsiella pneumoniae and Escherichia coli in Japan from a patient returned from Southeast Asia. Jpn J Infect Dis 2013;66:79-81.
  • Sun Y, Zeng Z, Chen S, Ma J, He L, Liu Y, et al. High prevalence of bla(CTX-M) extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clin Microbiol Infect 2010;16:1475-81.
  • Pitout JD, Laupland KB. Extended-spectrum beta-lactamaseproducing Enterobacteriaceae: An emerging public health concern. Lancet Infect Dis 2008;8:159-66.
  • Cantón R, Coque TM. The CTX-M beta-lactamase pandemic. Curr Opin Microbiol 2006;9:466-75.
  • Pitout JD. Extraintestinal pathogenic Escherichia coli: A combination of virulence with antibiotic resistance. Front Microbiol 2012;3:9.
  • Hasman H, Mevius D, Veldman K, Olesen I, Aarestrup FM. Beta-lactamases among extended-spectrum beta-lactamase (ESBL)-resistant salmonella from poultry, poultry products and human patients in the Netherlands. J Antimicrob Chemother 2005;56:115-21.
  • Carattoli A. Animal reservoirs for extended spectrum beta-lactamase producers. Clin Microbiol Infect 2008;14 Suppl 1:117-23.
  • Wittum TE, Mollenkopf DF, Daniels JB, Parkinson AE, Mathews JL, Fry PR, et al. CTX-M-type extended-spectrum β-lactamases present in Escherichia coli from the feces of cattle in Ohio, United States. Foodborne Pathog Dis 2010;7:1575-9.
  • Persoons D, Haesebrouck F, Smet A, Herman L, Heyndrickx M, Martel A, et al. Risk factors for ceftiofur resistance in Escherichia coli from Belgian broilers. Epidemiol Infect 2011;139:765-71.
  • Smet A, Martel A, Persoons D, Dewulf J, Heyndrickx M, Catry B, et al. Diversity of extended-spectrum beta-lactamases and class C beta-lactamases among cloacal Escherichia coli isolates in Belgian broiler farms. Antimicrob Agents Chemother 2008;52:1238-43.
  • World Health Organization. Antimicrobial Resistance: Global Report on Surveillance. Geneva: World Health Organization; 2014. Available from: http://www.who.int. [Last accessed on 2018 May 18].
  • Hering J, Hille K, Frömke C, von Münchhausen C, Hartmann M, Schneider B, et al. Prevalence and potential risk factors for the occurrence of cefotaxime resistant Escherichia coli in German fattening pig farms a cross-sectional study. Prev Vet Med 2014;116:129-37.
  • Blanco M, Alonso MP, Nicolas-Chanoine MH, Dahbi G, Mora A, Blanco JE, et al. Molecular epidemiology of Escherichia coli producing extended-spectrum {beta}-lactamases in Lugo (Spain): Dissemination of clone O25b: H4-ST131 producing CTX-M-15. J Antimicrob Chemother 2009;63:1135-41.
  • Egervärn M, Englund S, Ljunge M, Wiberg C, Finn M, Lindblad M, et al. Unexpected common occurrence of transferable extended spectrum cephalosporinase-producing Escherichia coli in Swedish surface waters used for drinking water supply. Sci Total Environ 2017;587-588:466-72.
  • Lupo A, Coyne S, Berendonk TU. Origin and evolution of antibiotic resistance: The common mechanisms of emergence and spread in water bodies. Front Microbiol 2012;3:18.
  • Baquero F, Martínez JL, Cantón R. Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 2008;19:260-5.
  • Wellington EM, Boxall AB, Cross P, Feil EJ, Gaze WH, Hawkey PM, et al. The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect Dis 2013;13:155-65.
  • van den Bogaard AE, Stobberingh EE. Epidemiology of resistance to antibiotics. Links between animals and humans. Int J Antimicrob Agents 2000;14:327-35.
  • Berge AC, Atwill ER, Sischo WM. Animal and farm influences on the dynamics of antibiotic resistance in faecal Escherichia coli in young dairy calves. Prev Vet Med 2005;69:25-38.
  • Berger-Bächi B, McCallum N. State of the knowledge of bacterial resistance. Injury 2006;37 Suppl 2:S20-5.
  • Di Labio E, Regula G, Steiner A, Miserez R, Thomann A, Ledergerber U, et al. Antimicrobial resistance in bacteria from Swiss veal calves at slaughter. Zoonoses Public Health 2007;54:344-52.
  • Meyer E, Gastmeier P, Kola A, Schwab F. Pet animals and foreign travel are risk factors for colonization with extendedspectrum β-lactamase-producing Escherichia coli. Infection 2012;40:685-7.
  • Wu G, Day MJ, Mafura MT, Nunez-Garcia J, Fenner JJ, Sharma M, et al. Comparative analysis of ESBL-positive Escherichia coli isolates from animals and humans from the UK, the Netherlands and Germany. PLoS One 2013;8:e75392.
  • von Wintersdorff CJ, Penders J, Stobberingh EE, Lashof AM, Hoebe CJ, Savelkoul PH, et al. High rates of antimicrobial drug resistance gene acquisition after international travel, the Netherlands. Emerg Infect Dis 2014;20:649-57.
  • Sharp H, Valentin L, Fischer J, Guerra B, Appel B, Käsbohrer A, et al. Estimation of the transfer of ESBLproducing Escherichia coli to humans in Germany. Berl Munch Tierarztl Wochenschr 2014;127:464-77.
  • Santman-Berends IM, Gonggrijp MA, Hage JJ, Heuvelink AE, Velthuis A, Lam TJGM, et al. Prevalence and risk factors for extended-spectrum β-lactamase or ampC-producing Escherichia coli in organic dairy herds in the Netherlands. J Dairy Sci 2017;100:562-71.
  • Khachatryan AR, Hancock DD, Besser TE, Call DR. Role of calf-adapted Escherichia coli in maintenance of antimicrobial drug resistance in dairy calves. Appl Environ Microbiol 2004;70:752-7.
  • Watson E, Jeckel S, Snow L, Stubbs R, Teale C, Wearing H, et al. Epidemiology of extended-spectrum beta-lactamase E. coli (CTX-M-15) on a commercial dairy farm. Vet Microbiol 2012;154:339-46.
  • Aust V, Knappstein K, Kunz HJ, Kaspar H, Wallmann J, Kaske M, et al. Feeding untreated and pasteurized waste milk and bulk milk to calves: Effects on calf performance, health status and antibiotic resistance of fecal bacteria. J Anim Physiol Anim Nutr (Berl) 2013;97:1091-103.
  • Xu F, Rösler U, Riese A, Baumann M, Zhao J, Wei H, et al. First Findings on the Prevalence of Extended-Spectrum β-Lactamases Producing Escherichia coli (ESBL-Producing E. coli) and Risk Factors in Dairy Farms in Beijing Area, China. Beijing: 10th Year Anniversary of Veterinary Public Health Centre for Asia Pacific; 2013.
  • Brunton LA, Reeves HE, Snow LC, Jones JR. A longitudinal field trial assessing the impact of feeding waste milk containing antibiotic residues on the prevalence of ESBL-producing Escherichia coli in calves. Prev Vet Med 2014;117:403-12.
  • Duse A, Waller KP, Emanuelson U, Unnerstad HE, Persson Y, Bengtsson B, et al. Risk factors for antimicrobial resistance in fecal Escherichia coli from pre-weaned dairy calves. J Dairy Sci 2015;98:500-16.
  • Snow LC, Warner RG, Cheney T, Wearing H, Stokes M, Harris K, et al. Risk factors associated with extended-spectrum beta-lactamase Escherichia coli (CTX-M) on dairy farms in North West England and North Wales. Prev Vet Med 2012;106:225-34.
  • Hordijk J, Wagenaar JA, van de Giessen A, Dierikx C, van Essen-Zandbergen A, Veldman K, et al. Increasing prevalence and diversity of ESBL/AmpC-type β-lactamase genes in Escherichia coli isolated from veal calves from 1997 to 2010. J Antimicrob Chemother 2013;68:1970-3.
  • Schmid A, Hörmansdorfer S, Messelhäusser U, Käsbohrer A, Sauter-Louis C, Mansfeld R, et al. Prevalence of extended-spectrum β-lactamase-producing Escherichia coli on Bavarian dairy and beef cattle farms. Appl Environ Microbiol 2013;79:3027-32.
  • Carmo LP, Nielsen LR, da Costa PM, Alban L. Exposure assessment of extended-spectrum beta-lactamases/AmpC beta-lactamases-producing Escherichia coli in meat in Denmark. Infect Ecol Epidemiol 2014;4:22924.
  • Dorado-García A, Mevius DJ, Jacobs JJ, Van Geijlswijk IM, Mouton JW, Wagenaar JA, et al. Quantitative assessment of antimicrobial resistance in livestock during the course of a nationwide antimicrobial use reduction in the Netherlands. J Antimicrob Chemother 2016;71:3607-19.
  • Gonggrijp MA, Santman-Berends IM, Heuvelink AE, Buter GJ, van Schaik G, Hage JJ, et al. Prevalence and risk factors for extended-spectrum β-lactamase and ampC-producing Escherichia coli in dairy farms. J Dairy Sci 2016;99:9001-13.
  • Blanc V, Mesa R, Saco M, Lavilla S, Prats G, Miró E, et al. ESBL and plasmidic class C beta-lactamase-producing E. coli strains isolated from poultry, pig and rabbit farms. Vet Microbiol 2006;118:299-304.
  • Mesa RJ, Blanc V, Blanch AR, Cortés P, González JJ, Lavilla S, et al. Extended-spectrum beta-lactamase-producing Enterobacteriaceae in different environments (humans, food, animal farms and sewage). J Antimicrob Chemother 2006;58:211-5.
  • Machado E, Coque TM, Cantón R, Sousa JC, Peixe L. Antibiotic resistance integrons and extended-spectrum {beta}-lactamases among Enterobacteriaceae isolates recovered from chickens and swine in Portugal. J Antimicrob Chemother 2008;62:296-302.
  • Laube H, Friese A, von Salviati C, Guerra B, Käsbohrer A, Kreienbrock L, et al. Longitudinal monitoring of extended-spectrum-beta-lactamase/AmpC-producing Escherichia coli at German broiler chicken fattening farms. Appl Environ Microbiol 2013;79:4815-20.
  • Hiroi M, Yamazaki F, Harada T, Takahashi N, Iida N, Noda Y, et al. Prevalence of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in food-producing animals. J Vet Med Sci 2012;74:189-95.
  • Dutil L, Irwin R, Finley R, Ng LK, Avery B, Boerlin P, et al. Ceftiofur resistance in Salmonella enterica serovar Heidelberg from chicken meat and humans, Canada. Emerg Infect Dis 2010;16:48-54.
  • Blaak H, van Hoek AH, Hamidjaja RA, van der Plaats RQ, Kerkhof-de Heer L, de Roda Husman AM, et al. Distribution, numbers, and diversity of ESBL-producing E. coli in the poultry farm environment. PLoS One 2015;10:e0135402.
  • van Duijkeren E, Wielders CCH, Dierikx CM, van Hoek AHAM, Hengeveld P, Veenman C, et al. Long-term carriage of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in the general population in the Netherlands. Clin Infect Dis 2018;66:1368-76.
  • Grall N, Lazarevic V, Gaïa N, Couffignal C, Laouénan C, Ilic-Habensus E, et al. Unexpected persistence of extendedspectrum β-lactamase-producing Enterobacteriaceae in the fecal microbiota of hospitalized patients treated with imipenem. Int J Antimicrob Agents 2017;50:81-7.
  • Dierikx CM, van Duijkeren E, Schoormans AH, van EssenZandbergen A, Veldman K, Kant A, et al. Occurrence and characteristics of extended-spectrum-β-lactamase- and ampC-producing clinical isolates derived from companion animals and horses. J Antimicrob Chemother 2012;67:1368-74.
  • Cortés P, Blanc V, Mora A, Dahbi G, Blanco JE, Blanco M, et al. Isolation and characterization of potentially pathogenic antimicrobial-resistant Escherichia coli strains from chicken and pig farms in Spain. Appl Environ Microbiol 2010;76:2799-805.
  • Gay N, Leclaire A, Laval M, Miltgen G, Jégo M, Stéphane R, et al. Risk factors of extended-spectrum β-lactamase producing Enterobacteriaceae occurrence in farms in reunion, Madagascar and Mayotte Islands, 2016-2017. Vet Sci 2018;5:22.
  • Laube H, Friese A, von Salviati C, Guerra B, Rösler U. Transmission of ESBL/AmpC-producing Escherichia coli from broiler chicken farms to surrounding areas. Vet Microbiol 2014;172:519-27.
  • Odenthal S, Akineden Ö, Usleber E. Extended-spectrum β-lactamase producing Enterobacteriaceae in bulk tank milk from German dairy farms. Int J Food Microbiol 2016;238:72-8.
  • Haenni M, Châtre P, Métayer V, Bour M, Signol E, Madec JY, et al. Comparative prevalence and characterization of ESBL-producing Enterobacteriaceae in dominant versus subdominant enteric flora in veal calves at slaughter-house, France. Vet Microbiol 2014;171:321-7.
  • Blaak H, de Kruijf P, Hamidjaja RA, van Hoek AH, de Roda Husman AM, Schets FM, et al. Prevalence and characteristics of ESBL-producing E. coli in Dutch recreational waters influenced by wastewater treatment plants. Vet Microbiol 2014;171:448-59.
  • Dahmen S, Métayer V, Gay E, Madec JY, Haenni M. Characterization of extended-spectrum beta-lactamase (ESBL)-carrying plasmids and clones of Enterobacteriaceae causing cattle mastitis in France. Vet Microbiol 2013;162:793-9.
  • Freitag C, Michael GB, Kadlec K, Hassel M, Schwarz S. Detection of plasmid-borne extended-spectrum β-lactamase (ESBL) genes in Escherichia coli isolates from bovine mastitis. Vet Microbiol 2017;200:151-6.
  • Walther B, Klein KS, Barton AK, Semmler T, Huber C, Wolf SA, et al. Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Acinetobacter baumannii among horses entering a veterinary teaching hospital: The contemporary “Trojan horse”. PLoS One 2018;13:e0191873.
  • Ojer-Usoz E, González D, García-Jalón I, Vitas AI. High dissemination of extended-spectrum β-lactamase-producing Enterobacteriaceae in effluents from wastewater treatment plants. Water Res 2014;56:37-47.
  • Wielders CCH, van Hoek AHAM, Hengeveld PD, Veenman C, Dierikx CM, Zomer TP, et al. Extendedspectrum β-lactamase and pAmpC-producing Enterobacteriaceae among the general population in a livestock-dense area. Clin Microbiol Infect 2017;23:120. e1-120.
  • Randall LP, Lodge MP, Elviss NC, Lemma FL, Hopkins KL, Teale CJ, et al. Evaluation of meat, fruit and vegetables from retail stores in five United Kingdom regions as sources of extended-spectrum beta-lactamase (ESBL)-producing and Carbapenem-resistant Escherichia coli. Int J Food Microbiol 2017;241:283-90.
  • Rocha-Gracia RC, Cortés-Cortés G, Lozano-Zarain P, Bello F, Martínez-Laguna Y, Torres C, et al. Faecal Escherichia coli isolates from healthy dogs Harbour CTX-M-15 and CMY-2 β-lactamases. Vet J 2015;203:315-9.
  • El Tawab AA, Mahmoud HB, Fatma I, El-khayat ME. Prevalence of blaTEM and blaSHV genes in genomic and plasmid DNA of ESBL producing Escherichia coli clinical isolates from chicken. Benha Vet Med J 2016;31:167-77.
  • Adelowo OO, Caucci S, Banjo OA, Nnanna OC, Awotipe EO, Peters FB, et al. Extended-spectrum beta-lactamase (ESBL)-producing bacteria isolated from hospital wastewaters, rivers and aquaculture sources in Nigeria. Environ Sci Pollut Res Int 2018;25:2744-55.
  • Okpara EO, Ojo OE, Awoyomi OJ, Dipeolu MA, Oyekunle MA, Schwarz S. Antimicrobial usage and presence of extended-spectrum β-lactamase-producing Enterobacteriaceae in animal-rearing households of selected rural and Periurban communities. Vet Microbiol. 2018; 218:31-39.
  • Chishimba K, Hang’ombe BM, Muzandu K, Mshana SE, Matee MI, Nakajima C, et al. Detection of extendedspectrum-beta-lactamase-producing Escherichia coli in market-ready chickens in Zambia. Int J Microbiol 2016;2016:5275724.
  • Pehlivanoglu F, Turutoglu H, Ozturk D. CTX-M-15-type extended-spectrum beta-lactamase-producing Escherichia coli as causative agent of bovine mastitis. Foodborne Pathog Dis 2016;13:477-82.
  • Bajaj P, Singh NS, Kanaujia PK, Virdi JS. Distribution and molecular characterization of genes encoding CTX-M and ampC β-lactamases in Escherichia coli isolated from an Indian urban aquatic environment. Sci Total Environ 2015;505:350-6.
  • Assawatheptawee K, Tansawai U, Kiddee A, Thongngen P, Punyadi P, Romgaew T, et al. Occurrence of extended-spectrum and ampC-type β-lactamase genes in Escherichia coli isolated from water environments in Northern Thailand. Microbes Environ 2017;32:293-6.
  • Tekiner İH, Özpınar H. Occurrence and characteristics of extended spectrum beta-lactamases-producing Enterobacteriaceae from foods of animal origin. Braz J Microbiol 2016;47:444-51.
  • Trongjit S, Angkittitrakul S, Chuanchuen R. Occurrence and molecular characteristics of antimicrobial resistance of Escherichia coli from broilers, pigs and meat products in Thailand and Cambodia provinces. Microbiol Immunol 2016;60:575-85.
  • Haenni M, Beyrouthy R, Lupo A, Châtre P, Madec JY, Bonnet R, et al. Epidemic spread of Escherichia coli ST744 isolates carrying mcr-3 and blaCTX-M-55 in cattle in France. J Antimicrob Chemother 2018;73:533-6.
  • Skočková A, Bogdanovičoá K, Koláčková I, Karpíšková R. Antimicrobial-resistant and extended-spectrum β-lactamaseproducing Escherichia coli in raw cow’s milk. J Food Prot 2015;78:72-7.
  • Dolejská M, Bierosová B, Kohoutová L, Literák I, Cízek A. Antibiotic-resistant salmonella and Escherichia coli isolates with integrons and extended-spectrum beta-lactamases in surface water and sympatric black-headed gulls. J Appl Microbiol 2009;106:1941-50.
  • Tansawai U, Sanguansermsri D, Na-udom A, Walsh TR, Niumsup PR. Occurrence of extended spectrum β-lactamase and AmpC genes among multidrug-resistant Escherichia coli and emergence of ST131 from poultry meat in Thailand. Food Control 2018;84:159-64.
  • Barzan M, Gharibi D, Ghorbanpoor M, Hajikolaei MH, Pourmehdi-Boroujeni M. Phylogenetic grouping and phenotypic detection of extended-spectrum βlactamases among Escherichia coli from calves and dairy cows in Khuzestan, Iran. Int J Enteric Pathog 2017;5:24-9.
  • Sudarwantoa MB, Akinedenb Ö, Sukmawinatac E, Pisestyanid H, Lukmane DW, Latiff H. CTX-M-15 and CTX-M-55 producing Escherichia coli in milk from dairy farms in West Java, Indonesia. Int J Sci 2017;31:409-16.
  • Randall LP, Lemma F, Rogers JP, Cheney TE, Powell LF, Teale CJ, et al. Prevalence of extended-spectrum-β-lactamase-producing Escherichia coli from pigs at slaughter in the UK in 2013. J Antimicrob Chemother 2014;69:2947-50.
  • Wang J, Stephan R, Karczmarczyk M, Yan Q, Hächler H, Fanning S, et al. Molecular characterization of bla ESBL-harboring conjugative plasmids identified in multi-drug resistant Escherichia coli isolated from food-producing animals and healthy humans. Front Microbiol 2013;4:188.
  • Costa D, Poeta P, Briñas L, Sáenz Y, Rodrigues J, Torres C, et al. Detection of CTX-M-1 and TEM-52 beta-lactamases in Escherichia coli strains from healthy pets in Portugal. J Antimicrob Chemother 2004;54:960-1.
  • Briñas L, Moreno MA, Teshager T, Sáenz Y, Porrero MC, Domínguez L, et al. Monitoring and characterization of extended-spectrum beta-lactamases in Escherichia coli strains from healthy and sick animals in Spain in 2003. Antimicrob Agents Chemother 2005;49:1262-4.
  • Shiraki Y, Shibata N, Doi Y, Arakawa Y. Escherichia coli producing CTX-M-2 beta-lactamase in cattle, Japan. Emerg Infect Dis 2004;10:69-75.
  • Kojima A, Ishii Y, Ishihara K, Esaki H, Asai T, Oda C, et al. Extended-spectrum-beta-lactamase-producing Escherichia coli strains isolated from farm animals from 1999 to 2002: Report from the Japanese veterinary antimicrobial resistance monitoring program. Antimicrob Agents Chemother 2005;49:3533-7.
  • Batchelor M, Hopkins K, Threlfall EJ, Clifton-Hadley FA, Stallwood AD, Davies RH, et al. Bla (CTX-M) genes in clinical Salmonella isolates recovered from humans in England and Wales from 1992 to 2003. Antimicrob Agents Chemother 2005;49:1319-22.
  • Kwoji ID, Musa JA, Daniel N, Mohzo DL, Bitrus AA, Ojo AA, et al. Extended-spectrum beta-lactamase-producing Escherichia coli in chickens from small-scale (backyard) poultry farms in Maiduguri, Nigeria. Int J One Health 2019;5:26-30.

Abstract Views: 383

PDF Views: 89




  • Extended-Spectrum Beta-Lactamase and Ampicillin Class C Beta‑Lactamase-producing Escherichia Coli From Food Animals:A Review

Abstract Views: 383  |  PDF Views: 89

Authors

Asinamai Athliamai Bitrus
Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Chulalongkorn University, Bangkok 10330, Thailand
Peter Anjili Mshelia
Department of Veterinary Physiology and Biochemistry, University of Maiduguri, P.M.B 1069 Maiduguri, Borno,, Nigeria
Iliya Dauda Kwoji
Department of Veterinary Microbiology, University of Maiduguri, P.M.B 1069 Maiduguri, Borno, Nigeria
Mohammed Dauda Goni
Department of Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
Saleh Mohammed Jajere
Department of Veterinary Public Health and Preventive Medicine, University of Maiduguri, P.M.B. 1069, Maiduguri, Borno, Nigeria

Abstract


Antimicrobial resistance has gained global notoriety due to its public health concern, the emergence of multiple drugresistant bacteria, and lack of new antimicrobials. Extended-spectrum beta-lactamase (ESBL)/ampicillin Class C (AmpC)- producing Escherichia coli and other zoonotic pathogens can be transmitted to humans from animals either through the food chain, direct contact or contamination of shared environments. There is a surge in the rate of resistance to medically important antibiotics such as carbapenem, ESBL, aminoglycosides, and fluoroquinolones among bacteria of zoonotic importance. Factors that may facilitate the occurrence, persistence and dissemination of ESBL/AmpC-Producing E. coli in humans and animal includes; 1). o ral administration of antimicrobials to humans primarily (by physician and health care providers) and secondarily to animals, 2). importation of parent stock and day-old chickens, 3). farm management practice and lack of water acidification in poultry, 4). contamination of feed, water and environment, 5). contamination of plants with feces of animals. Understanding these key factors will help reduce the level of resistance, thereby boosting the therapeutic effectiveness of antimicrobial agents in the treatment of animal and human infections. This review highlights the occurrence, risk factors, and public health importance of ESBL/AmpC-beta-lactamase producing E. coli isolated from livestock.

Keywords


Antimicrobial Resistance, Escherichia coli, Extended-Spectrum Beta-Lactamase/Ampicillin Class C.

References