Open Access Open Access  Restricted Access Subscription Access

Ultrasonic Attenuation in Yttrium Monochalcogenides


Affiliations
1 USICT, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka , New Delhi-110078, India
2 Amity Institute of Applied Sciences, Amity University, Noida-201313, India
3 State Council of Educational Research & Training Haryana, Gurugram-122 001, India
4 Amity School of Engineering and Technology, Delhi, Noida-201313, India
5 Amity Institute of Nanotechnology, Amity University, Noida-201313, India
6 Department of Physics, P.P.N. (P.G.) College, Kanpur-208001, India
 

The present paper reports ultrasonic properties of yttrium chalcogenides (YCh: Ch=S, Se and Te) along <110> direction in the temperature region 100-500 K. The Coulomb and Bom-Mayer potential model is applied to compute the higher order elastic constants. These elastic constants are used to utilise for computing ultrasonic velocity, ultrasonic Grüneisen parameters, thermal conductivity and ultrasonic attenuation. Additionally, the second order elastic constants has been applied to evaluate many mechanical properties such as Young modulus, bulk modulus, Cauchy's relation, Zener's anisotropy factor, toughness to fracture ratio for the prediction about the chosen materials. The YCh follow the Born stability criterion, so these materials are mechanical stable. The toughness to fracture is greater than 0.57, so these materials are brittle in nature. The thermal conductivity is also computed by means of Slack and Berman approach. Finally the temperature ultrasonic attenuation due to phonon-phonon interaction and thermo-elastic relaxation mechanisms has been computed along <110> at room temperature. The achieved results for yttrium monochalcogenides are discussed with similar type of materials.


Keywords

Monochalcogenides, Elastic Constants, Ultrasonic Properties, Thermal Properties.
User
Notifications
Font Size

  • Vaitheeswaran G., Kanchana V., Svane A., Christensen N. E., Staun Olsen J., Jorgensen J.-E. and Gerward L., High-pressure structural study of yttrium monochalcogenides from experiment and theory, Phys. Rev. B: Condens. Matter. 83 (2011), 184108.
  • Shinde S. M., Gupta S., Gupta S. K. and Jha P. R., Lattice dynamics and thermodynamical study of yttrium monochalcogenides, Comput. Mat .Sc. 92 (2014), 69-75.
  • Sahoo B.D., Joshi K.D. and Gupta S.C., Pressure effect on elastic, lattice dynamic and superconducting behaviour of yttrium sulfide: A first principle study, J. Appl. Phys. 115 (2014), 123502.
  • Maachou A., Aboura H., Amrani B., Khenata R., BinOmran S. and Varshney D., Structural stabilities, elastic and thermodynamic properties of scandium chalcogenides via first-principles calculations, Comput. Mater. Sci. 50 (2011), 3123-3130.
  • Seddik T., Khenata R., Bouhemadou A., Guechi N., Sayede A., Varshney D., Al-Douri Y., Reshak A. H. and Bin-Omran S., External temperature and pressure effects on thermodynamic properties and mechanical stability of yttrium chalcogenides YX (X=S, Se and Te), Physica B 428 (2013), 78-88.
  • Bhalla V., Singh D. and Jain S.K., Mechanical and thermophysical properties of rare-earth monopnictides, Int. J. Comput. Mater. Sci. Eng. 5 (2016), 1650012 (14pp.).
  • Bhalla V. and Singh D., Anisotropic assessment of ultrasonic wave velocity and thermal conductivity in ErX (X: n, As), Indian J. Pure Appl. Phys. 54 (2016), 40-45.
  • Roedhammer P., Reichardt W. and Holtzberg F., Soft-mode behavior in the phonon dispersion of YS, Phys. Rev. Lett. 40 (1978), 465-468.
  • Hulliger F. and Hull J.G.W., Superconductivity in rocksalt-type compounds, Solid State Commun. 8 (1970), 1379-1382.
  • Tutüncü H.M. and Srivastava G.P., Ab-initio investigations of phonon anomalies and superconductivity in the rock-salt YS, Philos. Mag. 87 (2007) 4109-4118 . 11 Steiner M.M., Eschrig H. and Monnier R., Longitudinal-acousticphonon softening in YS, LaS, and CeSe, Phy. Rev. B 45 (1992), 7183-7187.
  • Morelli D.T. and Slack G.A., High Thermal Conductivity Materials, Springer, New York, (2006).
  • Born M. and Mayer J.E., Zur Gittertheorie der Ionenkristalle, Z. Phys. 75 (1932), 1-18.
  • Fumi F.G. and Tosi M.P., Ionic sizes and Born repulsive parameters in the NaCl-type alkali 361 halides-I. J. Phys. Chem. Solids 25 (1964), 31-43.; Tosi M.P. and Fumi F.G., Ionic sizes and Born repulsive parameters in the NaCl-type alkali 359 halides-II, J. Phys. Chem. Solids 25 (1964), 45-52.
  • Leibfried G. and Haln H., Zur Temperaturabhangigkeit der Elastischen Konstantaaen von Alhalihalogenidkristallen, Z. Phys. 150 (1958), 497-525.
  • Mori S. and Hiki Y., Calculation of the third- and fourth-order elastic constants of alkali halide crystals, J. Phys. Soc. Jpn. 45 (1978), 1449-1456.
  • Bhalla V., Singh D. and Jain S.K., Mechanical and thermophysical properties of cerium monopnictides, Int. J. Thermophys. 37 (2016), 33 (17 pp.).
  • Langueur H. and Kassali K., Density functional study of the carbon dependence of the structural, mechanic, thermodynamic, and dynamic properties of SiC alloys, Int. J. Thermophys. 38 (2017), 41.
  • Singh D., Kaushik S., Pandey S. K., Mishra G. and Bhalla V., Mechanical and thermophysical properties of neptunium monopnictides, VNU J. Sc. Math- Phys. 32 (2016), 43-53.
  • Bhalla V., Singh D., Mishra G. and Wan M., Mechanical and thermophysical properties of neptunium monopnictides, J. Pure Appl. Ultrason. 38 (2016) 23-27.
  • Singh D., Kaushik S., Tripathi S., Bhalla V. and Gupta A.K., Temperature dependent elastic and ultrasonic properties of berkelium monopnictides, Arab. J. Sci. Eng. 39 (2014), 485-494.
  • Mason W.P. and Batemann T.B., Relation between third order elastic moduli and the thermal attenuation of ultrasonic waves in nonconducting and metallic crystals, J. Acoust. Soc. Am. 40, (1966), 852.
  • Yadav R.R. and Singh D., Ultrasonic attenuation in lanthanum monochalcogenides, J. Phys. Soc. Jpn. 70 (2001) 1825-1832.
  • Singh D., Pandey D. K., Singh D.K. and Yadav R.R., Propagation of ultrasonic waves in neptunium monochalcogenides, Appl. Acoust. 72 (2011), 737-741.
  • Bhalla V., Singh D., Mishra G. and Wan M., Mechanical and thermophysical properties of europium mono-chalcogenides, J. Pure Appl. Ultrason. 38 (2016), 23-27.
  • Cousin C.S.G., New relations between elastic constants of different orders under central force interactions, J. Phys. C: Solid State Phys. 4 (1971), 1117-1123.
  • Hiki Y. and Granato A.V., Anharmonicity in noble metals; higher order elastic constants, Phys. Rev. 144 (1966), 411-419.
  • Bhalla V., Kumar R., Tripathy C. and Singh D., Mechanical and thermal properties of praseodymium monopnictides: an ultrasonic study, Int. J. Mod. Phys. B 27 (2013), 1350116 (28 pp.).
  • Karki B.B., Ackland G.J. and Crain, Elastic instabilities in crystals from ab-initio stress-strain relations. J. Phys.: Condens. Matter 9 (1997), 8579-8590.
  • Kaushik S., Bhalla V. and Singh D., Temperature dependent elastic and ultrasonic properties of silver halide crystals, J. Pure Appl. Ultrason. 36 (2014), 85-90.
  • Kumar A., Singh D., Thakur R.K. and Kumar R., Mechanical and thermophysical properties of lutetium mochalcogenides: an ultrasonic study, J. Pure Appl. Ultrasonic. 39 (2007), 43-48.
  • Kor S.K., Singh D. and Srivastava A.K., Ultrasonic studies of thulium monochalcogenides, Indian J. Pure Appl. Phys. 43 (2005), 355-358.

Abstract Views: 185

PDF Views: 1




  • Ultrasonic Attenuation in Yttrium Monochalcogenides

Abstract Views: 185  |  PDF Views: 1

Authors

Bhawan Jyoti
USICT, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka , New Delhi-110078, India
Devraj Singh
Amity Institute of Applied Sciences, Amity University, Noida-201313, India
Shivani Kaushik
State Council of Educational Research & Training Haryana, Gurugram-122 001, India
Vyoma Bhalla
Amity School of Engineering and Technology, Delhi, Noida-201313, India
Shikha Wadhwa
Amity Institute of Nanotechnology, Amity University, Noida-201313, India
D. K. Pandey
Department of Physics, P.P.N. (P.G.) College, Kanpur-208001, India

Abstract


The present paper reports ultrasonic properties of yttrium chalcogenides (YCh: Ch=S, Se and Te) along <110> direction in the temperature region 100-500 K. The Coulomb and Bom-Mayer potential model is applied to compute the higher order elastic constants. These elastic constants are used to utilise for computing ultrasonic velocity, ultrasonic Grüneisen parameters, thermal conductivity and ultrasonic attenuation. Additionally, the second order elastic constants has been applied to evaluate many mechanical properties such as Young modulus, bulk modulus, Cauchy's relation, Zener's anisotropy factor, toughness to fracture ratio for the prediction about the chosen materials. The YCh follow the Born stability criterion, so these materials are mechanical stable. The toughness to fracture is greater than 0.57, so these materials are brittle in nature. The thermal conductivity is also computed by means of Slack and Berman approach. Finally the temperature ultrasonic attenuation due to phonon-phonon interaction and thermo-elastic relaxation mechanisms has been computed along <110> at room temperature. The achieved results for yttrium monochalcogenides are discussed with similar type of materials.


Keywords


Monochalcogenides, Elastic Constants, Ultrasonic Properties, Thermal Properties.

References