Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Emitter Selection for Efficient Si Solar Cells:PC1D Simulations


Affiliations
1 Department of Physics, Govind National College Narangwal,Govind Nagar, Narangwal, Ludhiana, 141203 (Pb), India
     

   Subscribe/Renew Journal


The p-n junction solar cell is investigated by PC1D simulation by keeping both p type and n type as a front/emitter side towards the irradiated solar spectrum. The calculated cell parameters viz. characteristics I-V, external quantum efficiency (EQE) and open circuit voltage (Voc) helps to analyze the efficiency of solar cells. The analysis indicated that the surface recombination in the short wavelength region on the front surface can be overcome by decreasing the n type front layer thickness and hence, improve the efficiency of cell. Moreover, the reflectance in the visible regime of solar spectrum can be reduced by increasing the p type layer thickness but this improvement is not believed to be significant and hence, the study suggests the n type as a better material for front side selection in comparisons to p type. Furthermore, the fill factor (FF) and power conversion efficiency (PCE) calculation helps to optimize the layer thickness. We have achieved an open circuit voltage of 723mV and a fill factor of about 84% at 0.5μm layer thickness of n type material.

Keywords

Solar Cells, Si, EQE, Power Conversion Efficiency, Fill Factor.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Ali, A.; Cheow, S. L.; Azhari, A. W.; Sopian, K.; Zaidi, S. H. Results in Physics. 2017, 7, 225–232
  • Asim, N.; Sopian, K.; Ahmadi, S.; Saeedfar, K.; Alghoul, M. A.; Saadatian, O.; Zaidi, S. H. Renewable Sustainable Energy Rev. 2012, 16, 5834–5847.
  • Green, M. A. Physica E: Low dimensional Systems and Nanostructures. 2002, 14, 11-17.
  • Aberle, A. G. Prog. Photovolt Res Appl. 2000, 8, 473-487.
  • Green, M. A.; Zhao, J.; Wang, A.; Wenham, S. R. IEEE Trans Electron Devices. 1999, 46, 1940-1947.
  • Brammer, T.; Zastrow, U.; Stiebig, H. Proc. 17th European Photovoltaic Solar Energy Conf., Munich, Germany 2001, 22-26.
  • Shetty, K. D.; Boreland, M. B.; Shanmugam, B.; Cunnusamy, J.; Wu, C.; Iggo, S.; Antoniadis, H. Energy Procedia, 2013, 33, 70-75.
  • Mikeska, K. R.; Carroll, A. F.; Hanna, L. G.; Lewittes, M. E.; Li, Z.; Liang, L.; Meisel, A.; Scardera, G.; Subramoney, S.; VerNooy, P. D. Proc. 27th European Photovoltaic Solar Energy Conf., Messe Frankfurt, Germany, 2012, 1717-1721.
  • Alexander, V.; Korovina, José Alvareza; Jean-Paul, K. Energy Procedia, 2016, 92, 103 – 108.
  • Reiter, S.; Koper, N.; Reineke-Koch, R.; Larionova, Y.; Turcu, M.; Krügener, J.; Tetzlaff, D.; Wietler, T.; Höhne, U.; Kähler, J.; Brendel, R.; Peibst, R. Energy Procedia. 2016, 199-204.
  • Römer, U.; Peibst, R.; Ohrdes, T.; Lim, B.; Krügener, J.; Bugiel, E.; Wietler, T.; Brendel, R. Solar energy materials and solar cells. 2014, 131, 85-91.
  • Glunz, S. W.; Rein, S.; Lee, J. Y.; Warta, W. J Appl Phys. 2001, 90, 2397-404.
  • Macdonald D.; Geerligs, L. J. Appl Phys Lett. 2004, 85, 4061-3.
  • Meier, D. L.; Davis, H. P.; Garcia, R. A.; Salami, J.; Rohatgi, A.; Ebong, A. Solar Energy Materials and Solar Cells. 2001, 65, 621-7.
  • R. Brendel et al, Proceedings of the 31st European Photovoltaic Solar Energy Conference and Exhibition. 2015, 264.
  • Singh, H. K.; Mondal, S.; Arunachalam, B.; Soman, A.; Sharma, P.; Solanki, C. S. Plasmonics 2017, DOI: 10.1007/s11468-017-0563-8
  • Clugston, D. A.; Basore, P. A. IEEE 26thPhotovolt. Spec. Conf., 1997, 207–210.
  • Stangl, R.; Kriegel, M.; Schmidt, M. IEEE 4th World Conference on Photovoltaic Energy Conference. 2006, 2, 1350–1353.
  • Analysis of Microelectronic and Photonic Structures (AMPS) software was developed at Pennsylvania State University under the direction of Fonash, S.J., with funding from the Electric Power Research Institute. Also, see. http://www.psu.edu/dept/AMPS/.
  • Hernández-Como, N.; Morales-Acevedo, A. Solar Energy Materials and Solar Cells. 2010, 94, 62−67.
  • Burgelman, M.; Nollet, P.; Degrave, S. Thin Solid Films, 2000, 361–362, 527–532. Also, see http://www.elis.ugent.be/ELISgroups/solar/projects/scaps.html.
  • Schropp, R. E. I.; Zeman, M. Kluwer Academic Publishers, Boston, 1998.
  • Shui-Yang Lien; Dong-Sing Wuu. Prog. Photovolt: Res. Appl. 2009, DOI: 10.1002/pip.
  • https://www.engineering.unsw.edu.au/energy-engineering/research/software-data-links/pc1d-software-for-modelling-a-solar-cell
  • http://rredc.nrel.gov/Solar/Spectra/am1.5/
  • Belarbi, M.; Benyoucef, A.; Benyoucef, B. Advanced Energy: An International Journal. 2014, 1, 1-10.
  • Meier, D.; Good, E. A.; Garcia, R. A.; Bingham, B. L.; Yamanaka, S.; Chandrsekaran, V.; Bucher, C. IEEE 4th World Conference on Photovoltaic Energy Conference. 2006, DOI: 10.1109/WCPEC.2006.279656.
  • Green, M. A., Solid State Electronics 24, 788, (1981)

Abstract Views: 392

PDF Views: 0




  • Emitter Selection for Efficient Si Solar Cells:PC1D Simulations

Abstract Views: 392  |  PDF Views: 0

Authors

Jagmeet Singh Sekhon
Department of Physics, Govind National College Narangwal,Govind Nagar, Narangwal, Ludhiana, 141203 (Pb), India

Abstract


The p-n junction solar cell is investigated by PC1D simulation by keeping both p type and n type as a front/emitter side towards the irradiated solar spectrum. The calculated cell parameters viz. characteristics I-V, external quantum efficiency (EQE) and open circuit voltage (Voc) helps to analyze the efficiency of solar cells. The analysis indicated that the surface recombination in the short wavelength region on the front surface can be overcome by decreasing the n type front layer thickness and hence, improve the efficiency of cell. Moreover, the reflectance in the visible regime of solar spectrum can be reduced by increasing the p type layer thickness but this improvement is not believed to be significant and hence, the study suggests the n type as a better material for front side selection in comparisons to p type. Furthermore, the fill factor (FF) and power conversion efficiency (PCE) calculation helps to optimize the layer thickness. We have achieved an open circuit voltage of 723mV and a fill factor of about 84% at 0.5μm layer thickness of n type material.

Keywords


Solar Cells, Si, EQE, Power Conversion Efficiency, Fill Factor.

References