Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Physical Investigations on (MoO3)x-(WO3)1-x Composite Thin Films


Affiliations
1 Department of Applied Sciences and Humanities, Sasi Institute of Technology and Engineering, Tadepalligudem – 534 101, West Godavari Dt, Andhra Pradesh, India
2 Department of Sciences and Humanities, Chalapathy Institute of Technology, A R Nagar, Mothadaka, Guntur – 522016, Andhra Pradesh, India
     

   Subscribe/Renew Journal


Thin films of (MoO3)x-(WO3)1-x (x = 0.4, 0.6, 0.8) were deposited on glass and silicon (100) substrates by flash evaporation technique. The purpose of the flash evaporation is to prevent the decomposition of composite into individual species during thin film deposition. The films were deposited at the oxygen partial pressures of 2x10-5, 2x10-4 mbar and substrate temperatures of 150 0C, 350 0C. The deposited films were characterized for their structure by Graging Incidence X-ray Diffraction (GIXRD), microstructure by Field Emission Scanning Electron Microscopy (FESEM), optical property by UVVis spectra. The X-ray diffraction reveals that the (MoO3)x-(WO3)1-x composite thin film crystallizes in orthorhombic and monoclinic phases. At lower oxygen partial pressures of 2x10-5 mbar and lower substrate temperatures of 150 0C the film crystallizes in orthorhombic and tetragonal phases. Whereas at higher substrate temperatures of 350 0C both orthorhombic and monoclinic mixed phases are present. The optical transmittance spectra of the films were recorded in the wavelength range 300-1100 nm. The optical energy gap of the films is 3.05 eV and increases to 3.21 eV with increase in MoO3 concentration. The width of localized states is 0.47 eV and decreasing with increasing MoO3 concentration. The oxide materials in thin film form exhibit the change in the transmittance when exposed to electro magnetic waves (EM) of visible region. In this respect the estimation of color centre concentration will give the information regarding the response of the films to change their transmittance when exposed to EM waves in the visible region. The colourcenter concentration of the films (for x = 0.4) deposited at 150 0C and irradiation time of 120 minutes, is 3.02 x 1017/cm3 and reaches to maximum value of 4.94 x 1017/cm3, (for x = 0.8) when deposited at 350 0C and irradiated for 150 minutes.

Keywords

Composite Thin Films, Characterization, Flash Evaporation, Photochromism.
Subscription Login to verify subscription
User
Notifications
Font Size


  • S. Morandi, G. Ghiotti, A. Chiorino and E. Comini, Thin Solid Films, 490, 74 (2005). https://doi.org/10.1016/j.tsf.2005.04.020
  • R. Godbole, A. Vedpathak, V. Godbole and S. Bhagwat, Mater. Res. Express., 4, 076401 (2017). https://doi.org/10.1088/2053-1591/aa72a8
  • Lee K, de Lannoy CF, Liguori S, Wilcox J, Langmuir, 33, 9521 (2017). https://doi.org/10.1021/acs.langmuir.6b04149
  • C. C. Mardare and A. W. Hassel, ACS Comb. Sci., 16, 631 (2014). https://doi.org/10.1021/co5000536 PMid:25330357
  • E. H. Poniatowski, M. Jouanne, J. F. Morhange, C. Julien, R. Diamant, M. F. Guasti, G. A. Fuentes and J. C. Alonso, Appl. Surf. Sci., 127-129, 674(1998). https://doi.org/10.1016/S0169-4332(97)00724-1
  • H. Miyazaki, M. Inada, H. Suzuki and T. Ota, J. Ceramic Soc. Japan, 121, 106 (2013). https://doi.org/10.2109/jcersj2.121.106
  • K. Gesheva, A. Szekeres and T. Ivanova, Sol. Energ. Mater. Sol. Cell., 76, 563 (2003). https://doi.org/10.1016/S0927-0248(02)00267-2
  • K. S. Rao, K. V. Madhuri, S. Uthanna, O. M. Hussain and C. Julien, Mater. Sci. Eng. B., 100, 79 (2003). https://doi.org/10.1016/S0921-5107(03)00078-3
  • J. N. Yao, B. H. Loo, K. Hashimoto and A. Fujishima, Phys. Chem. Phys., 95, 554 (1991).
  • M. A. Ashrafi, M. Ranjbar, H. Kalhori and H. Salamati, Thin Solid Films, 621, 220 (2017). https://doi.org/10.1016/j.tsf.2016.11.041
  • H. Miyazaki, T. Matswra and T. Ota, RSC Adv., 7, 2388 (2017)
  • K. Galatsis, Y. X. Li, W. Wlodarski, K. K. Zadeh, Sensors and Actuators B., 77, 478 (2001).
  • A. Bouzidi, N. Benramdane, H. T. Derraz, C. Mathieu, B. Khelifa and R. Desfeux, Mater. Sci. Eng. B., 97, 5 (2003). https://doi.org/10.1016/S0921-5107(02)00385-9
  • H. M. F. Ahmed and N. S. Begum, Bull. Mater. Sci., 36, 45 (2013). https://doi.org/10.1007/s12034-013-0422-y
  • F. Hamelmann, K. Gesheva, T. Ivanova, A. Szekeres, M. Abrashev and U. Heinzmann, Journal of Optoelectronics and Advanced Materials, 7, 393 (2005).
  • H. M. F. Ahmed and N. S. Begum, Bull. Mater. Sci., 36, 45 (2013) https://doi.org/10.1007/s12034-013-0422-y
  • A. A. Akl, S. A. Aly and M. A. Kaid, Res. Rev. J. Mater. Sci. (2016). DOI: 10.4172/2321-6212.S1-002
  • T. Ivanova, K. A. Gesheva, M. Kalitzova, F. Hamelmann, F. Luekermann and U. Heinzmann, Journalof Optoelectronics and advanced Materials, 11, 1513 (2009).
  • I. Navas, R. Vinodkumar, K. J. Lethy, A. P. Detty, V. Ganesan,V. Sathe and V. P. Mahadevan Pillai, J. Phys. D: Appl. Phys., 42, 175305 (2009). https://doi.org/10.1063/1.3137195
  • T. Ivanova, K. A. Gesheva and A. Szekeres, J. Solid State Electrochem., 7, 21 (2002). https://doi.org/10.1007/s10008-002-0274-7
  • I. Shiyanovskaya, H. Ratajczak, J. Baran, and M. Marchewka, J. Mol. Struct., 348, 99 (1995). https://doi.org/10.1016/0022-2860(95)08598-P
  • N. E. Stankova, P. A. Atanasov, T. J. Stanimirova, A. O. Dikovska and R. W. Eason, Appl. Surf. Sci., 247, 401 (2005). https://doi.org/10.1016/j.apsusc.2005.01.057
  • P. R. Patil and P. S. Patil, Thin Solid Films, 382, 13 (2001). https://doi.org/10.1016/S0040-6090(00)01410-3
  • V. Bhosle, J. Appl. Phys., 97, 083539 (2005). https://doi.org/10.1063/1.1868852
  • F. Urbach, Phys. Rev. 92, 627 (1996).
  • J. Tauc, In: The Optical Properties Solids, Ed. F. Abeles, North-Holland, Amsterdam, 27, 277 (1972).
  • A. M. Stoneham, Theory of defects in Solids, Clarendon Press, Oxford, 1975.
  • K. Harikrishna, O. M. Hussain and C. Jullien, Research letters in Nanotechnology, 5, 217510 (2008).
  • B. W. Faughnan and R. S. Crandall, Appl. Phys. Lettt., 31, 834 (1977). https://doi.org/10.1063/1.89566
  • Y. Hiruta, M. Kitao and W. Yamada, Jpn. J. Appl. Phys., 23, 1624 (1984). https://doi.org/10.1143/JJAP.23.1624
  • T. Ivanova, K. A. Geshava, G. Popkirov, M. Ganchev and E.Tzvetkova, Mater. Sci. Eng. B., 119, 232 (2005). https://doi.org/10.1016/j.mseb.2004.12.084
  • V. Madhavi, P. Kondaiah, S. SubbaRayudu, O. M. Hussain, and S. Uthanna, Materials Express, 3, 2158 (2013).
  • O. M. Hussain, K. S. Rao, K. V. Madhuri, C. V. Ramana, B. S. Naidu, S. Pai, J. John and R. Pinto, Appl. Phys. Mater. Sci. Process., 75, 417 (2002). https://doi.org/10.1016/S09240136(02)00061-4

Abstract Views: 261

PDF Views: 5




  • Physical Investigations on (MoO3)x-(WO3)1-x Composite Thin Films

Abstract Views: 261  |  PDF Views: 5

Authors

K. Srinivasarao
Department of Applied Sciences and Humanities, Sasi Institute of Technology and Engineering, Tadepalligudem – 534 101, West Godavari Dt, Andhra Pradesh, India
Ch. Prameela
Department of Sciences and Humanities, Chalapathy Institute of Technology, A R Nagar, Mothadaka, Guntur – 522016, Andhra Pradesh, India

Abstract


Thin films of (MoO3)x-(WO3)1-x (x = 0.4, 0.6, 0.8) were deposited on glass and silicon (100) substrates by flash evaporation technique. The purpose of the flash evaporation is to prevent the decomposition of composite into individual species during thin film deposition. The films were deposited at the oxygen partial pressures of 2x10-5, 2x10-4 mbar and substrate temperatures of 150 0C, 350 0C. The deposited films were characterized for their structure by Graging Incidence X-ray Diffraction (GIXRD), microstructure by Field Emission Scanning Electron Microscopy (FESEM), optical property by UVVis spectra. The X-ray diffraction reveals that the (MoO3)x-(WO3)1-x composite thin film crystallizes in orthorhombic and monoclinic phases. At lower oxygen partial pressures of 2x10-5 mbar and lower substrate temperatures of 150 0C the film crystallizes in orthorhombic and tetragonal phases. Whereas at higher substrate temperatures of 350 0C both orthorhombic and monoclinic mixed phases are present. The optical transmittance spectra of the films were recorded in the wavelength range 300-1100 nm. The optical energy gap of the films is 3.05 eV and increases to 3.21 eV with increase in MoO3 concentration. The width of localized states is 0.47 eV and decreasing with increasing MoO3 concentration. The oxide materials in thin film form exhibit the change in the transmittance when exposed to electro magnetic waves (EM) of visible region. In this respect the estimation of color centre concentration will give the information regarding the response of the films to change their transmittance when exposed to EM waves in the visible region. The colourcenter concentration of the films (for x = 0.4) deposited at 150 0C and irradiation time of 120 minutes, is 3.02 x 1017/cm3 and reaches to maximum value of 4.94 x 1017/cm3, (for x = 0.8) when deposited at 350 0C and irradiated for 150 minutes.

Keywords


Composite Thin Films, Characterization, Flash Evaporation, Photochromism.

References





DOI: https://doi.org/10.18311/jsst%2F2019%2F18461