Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Ultrasonic Velocity and Critical Micellar Concentration of Glycerol Monostearate in Mixed Organic Solvent at 290 K


Affiliations
1 Department of Chemistry, Eternal University, Baru Sahib –173101, Himachal Pradesh, India
     

   Subscribe/Renew Journal


Density, viscosity, ultrasonic velocity and refractive index measurements of Glycerol Monostearate (GMS) in 80/20 (% v/v) benzene-methanol mixture at 290 K with varying concentrations have shown that there is noticeable variation in aggregation of non-ionic surfactant at Critical Micellar Concentration (CMC). Density and viscosity results have been satisfactorily explained by some well-known equations viz. Jones-Dole, Moulik, Vand, Einstein and Root. Jacobson model has been used to evaluate adiabatic compressibility, molar compressibility, solvation number molar sound velocity, relaxation strength, relative association and other allied acoustical constants. The variation of refractive index with concentration of GMS solutions shows a marked change in value at CMC. Treatment of data obtained from density, viscosity, ultrasonic velocity and refractive index measurements has shown that strong interaction exists between GMS and solvent molecules, and GMS molecules do not aggregate considerably in pre-micellization region.

Keywords

Antistaling and Antistatic agents, Emulsifiers, Nonionic Surfactants.
Subscription Login to verify subscription
User
Notifications
Font Size


  • C. Yu, Y. Lee, B. Cheon and S. Lee, Bull. Korean Chem. Soc., 24(8), 1229 (2003). https://doi.org/10.5012/bkcs.2003.24.8.1229
  • C. G. Biliaderis and H. D. Seneviratne, Carbohydr. Res., 208, 199 (1990). https://doi.org/10.1016/0008-6215(90)80100-H
  • R. S. Manohar and P. H. Haridas Rao, J. Sci. Food. Agric., 79, 1223 (1999). https://doi.org/10.1002/(SICI)10970010(19990715)79:10<1223::AID-JSFA346>3.0.CO;2-W
  • J. Gray and J. Bemiller, In Food Science and Food safety, 2, 1 (2003). https://doi.org/10.1111/j.1541-4337.2003.tb00011.x
  • R. Ravi, R. S. Manohar and P. H. Rao, J. Sci Food Agric, 79, 1571 (1999). https://doi.org/10.1002/(SICI)10970010(199909)79:12<1571::AID-JSFA400>3.0.CO;2-2
  • S. Jaya and H. Das, J. Food. Eng., 63,125 (2004). https://doi.org/10.1016/S0260-8774(03)00135-3
  • B. Marcat and G. Cecchin, J. Chrom. B, 73, 83 (1996). https://doi.org/10.1016/0021-9673(95)01108-0
  • R. A. Castello and A. M. Mattocks, J. Pharmaceut. Sci., 51(2), 106 (1962). https://doi.org/10.1002/jps.2600510204 PMid:13877196
  • L. Irusta, A. Gonza, M. J. F. Berridi, J. J. Iruin, J. M. Asu ,I. Albizu, A. Ibarzabal, A. Salmero , A. Fontecha, Y. Garcı and A. I. Real, J. Appl. Polymer. Sci., 111, 2299 (2009). https:// doi.org/10.1002/app.29280
  • M. I. M. Valero, V. M. P. Henestrosa and A. M. R. Pilosof, Colloids and Surfaces B, 151, 68 (2017). https://doi.org/10.1016/j.colsurfb.2016.12.015 PMid:27987457
  • F. C. Wang and A. G. Marangoni, RSC Advance, 5, 93108 (2015). https://doi.org/10.1039/C5RA18748F
  • L. Han and T. Wang, RSC Advance, 6, 34137 (2016). https:// doi.org/10.1039/C6RA22284F
  • R. M. Cornish, J. Soc. Cosmetic Chem, 19, 109 (1968).
  • G. A. Burdock, Encylopedia of food and color additives, CRC Press, Tylor and Francis Group, New York (1996).
  • K. Kishore and S. K. Upadhyaya, J. pure & Applied Ultrasonics, 33(2), 39 (2011).
  • R. K. Devi and S. Geetha, Int. J Chem. Tech. Res., 8(11), 519 (2005).
  • W. C. Roots, J. Am. Chem. Soc., 55, 850 (1933). https://doi.org/10.1021/ja01329a503
  • A. Einstein, Ann. Phys., 19, 289 (1906). https://doi.org/10.1002/andp.19063240204
  • V. Vand, J. Phys. Colloid Chem., 52(2), 277 (1948). https:// doi.org/10.1021/j150458a001 PMid:18906401
  • S. P. Moulik, J. Phys. Chem., 72 (13), 4682 (1968). https:// doi.org/10.1021/j100859a054
  • G. Jone and M. Dole, J. Am. Chem. Soc., 5(10), 2950 (1929). https://doi.org/10.1021/ja01385a012
  • S. K. Upadhyaya and R Nagar, Indian J. Pure and Appl. Phys., 33, 198 (1995).
  • S. Prakash, F. M. Ichihaporia and J. D. Pandey, J. Physic. Chem., 58, 3078 (1964). https://doi.org/10.1021/j100792a512
  • R. Garnsey, R. J. Boe, R. Mohoney and T. A. Litovitz, J. Chem. Phys., 50, 5222 (1969). https://doi.org/10.1063/1.1671038
  • B. Jacobson and P. A. Heedman, Acta Chem. Scand., 7(5), 705 (1953). https://doi.org/10.3891/acta.chem.scand.070705
  • T. N. Srivastava, R. P. Singh and B. Swaroop, Indian J. Pure and Appl. Phys., 21, 67 (1983).
  • F.T. Gucker, Chem. Rev., 13, 111 (1933). https://doi.org/10.1021/cr60044a009
  • K. Kishore, S. K. Upadhyaya and Y. Walia, Int. J. Theor. Appl. Sci., 1(1), 32 (2009).
  • H. Erying and J. F. Kincaid, J. Chem. Phy., 6, 620 (1938). https://doi.org/10.1063/1.1750134
  • K. Kishore and S.K. Upadhyaya, Tenside Surfactants Detergents, 47(3), 184 (2010). https://doi.org/10.3139/113.110058
  • K. M. Jadhav, B. R. Shinde, S. S. Jadhav, S. U. Shinde and D. R. Shengule, Arch. Phy. Res., 2(2), 107 (2011).
  • K. N. Mehrotra and M. Anis, Monatshefte für Chemie, 126, 637 (1995). https://doi.org/10.1007/BF00807153
  • R. P. Verma, U. Kumar and P. Sangal, Asian J. Chem., 12(3), 659 (2000).
  • K. Kishore, M. Singh and S. Negi, Pharmaceutical Sciences and Analytical Research Journal, 1(1), 1 (2018).

Abstract Views: 283

PDF Views: 3




  • Ultrasonic Velocity and Critical Micellar Concentration of Glycerol Monostearate in Mixed Organic Solvent at 290 K

Abstract Views: 283  |  PDF Views: 3

Authors

Kritika Sharma
Department of Chemistry, Eternal University, Baru Sahib –173101, Himachal Pradesh, India
Sujata Negi
Department of Chemistry, Eternal University, Baru Sahib –173101, Himachal Pradesh, India
Kamal Kishore
Department of Chemistry, Eternal University, Baru Sahib –173101, Himachal Pradesh, India

Abstract


Density, viscosity, ultrasonic velocity and refractive index measurements of Glycerol Monostearate (GMS) in 80/20 (% v/v) benzene-methanol mixture at 290 K with varying concentrations have shown that there is noticeable variation in aggregation of non-ionic surfactant at Critical Micellar Concentration (CMC). Density and viscosity results have been satisfactorily explained by some well-known equations viz. Jones-Dole, Moulik, Vand, Einstein and Root. Jacobson model has been used to evaluate adiabatic compressibility, molar compressibility, solvation number molar sound velocity, relaxation strength, relative association and other allied acoustical constants. The variation of refractive index with concentration of GMS solutions shows a marked change in value at CMC. Treatment of data obtained from density, viscosity, ultrasonic velocity and refractive index measurements has shown that strong interaction exists between GMS and solvent molecules, and GMS molecules do not aggregate considerably in pre-micellization region.

Keywords


Antistaling and Antistatic agents, Emulsifiers, Nonionic Surfactants.

References





DOI: https://doi.org/10.18311/jsst%2F2019%2F16349