Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Highly Sensitive Polymer based Sensor for Determination of the Drug Mitoxantrone


Affiliations
1 Department of Chemistry, FMKMC College, Mangalore University Constituent College, Madikeri – 571201, Karnataka, India
     

   Subscribe/Renew Journal


A carbon paste electrode modified with electropolymerization of glycine exhibited an attractive performance for the detection and determination of a anticancer drug, Mitoxantrone (MTX). Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) were used in a combined way to identify the electrochemical characteristics and to optimize the conditions for detection of MTX. The electrochemical behaviour of MTX was investigated and a well-defined oxidation peak with high sensitivity was observed at the film electrode. Poly (Glycine) Modified Carbon Paste Electrode (PGMCPE) greatly enhanced the oxidation peak current of MTX owing to the extraordinary properties of glycine film. Based on this, a sensitive and simple voltammetric method was developed for measurement of MTX. A sensitive linear voltammetric response for MTX was obtained in the concentration range of 4×10−8-1×10-5 mol/L, detection limit was 3.2×10−7 M and quantification limit was 10×10−7 M using CV. The proposed method possessed advantages such as low detection limit, fast response, low cost and simplicity.

Keywords

Cyclic Voltammetry, Drug MTX, Poly (Glycine) Modified Paste Carbon Electrode.
Subscription Login to verify subscription
User
Notifications
Font Size


  • G. Alarcon-Ángeles, S. Corona-Avendano, M. PalomarPardave, A. Rojas-Hernandez, M. Romero-Romo and M. T. Ramírez-Silva, Electrochim. Acta, 53, 3013 (2008). https:// doi.org/10.1016/j.electacta.2007.11.016
  • S. Corona-Avendano, G. Alarcon-Angeles, M. RomeroRomo, A. Cuan, M. T. Ramirez-Silva, L. Hernandez-Martinez and M. Palomar-Pardave, J. Appl. Electrochem., 40, 463 (2010). https://doi.org/10.1007/s10800-009-0017-x
  • E. Colin-Orozco, M. T. Ramirez-Silva, S. CoronaAvendano, M. Romero-Romo and M. Palomar-Pardave, Electrochim. Acta, 85, 307 (2012). https://doi.org/10.1016/j. electacta.2012.08.081
  • S. Corona-Avendano, G. Alarcon-Ángeles, M. T. RamírezSilva, G. Rosquete-Pina, M. Romero-Romo and M. Palomar-Pardave, J. Electroanal. Chem., 609, 17 (2007). https://doi.org/10.1016/j.jelechem.2007.05.021
  • J. G. Manjunatha, M. Deraman, N. H. Basri, N. S. Mohd Nor, I. A. Talib and N. Ataollahi, C. R. Chimie, 17, 465 (2014). https://doi.org/10.1016/j.crci.2013.09.016
  • J. G. Manjunatha, B. E. Kumara Swamy, G. P. Mamatha, O. Gilbert and M. T. Shreenivas and B. S. Sherigara, Der Pharma Chemica, 3, 236 (2011).
  • J. G. Manjunatha, M. Deraman, and N. H. Basri, Asian J. Pharm. Clin. Res., 8, 40 (2015).
  • J. G. Manjunatha, Int. J. ChemTech Res., 9, 136 (2016).
  • J. G. Manjunatha, M. Deraman, N. H. Basri and I. A. Talib, Adv. Mater. Res., 895, 447 (2014). https://doi.org/10.4028/ www.scientific.net/AMR.895.447
  • J. G. Manjunatha, M. Deraman, N. H. Basri and I. A. Talib, Arab. J. Chem., (2014). https://doi.org/10.1016/j. arabjc.2014.10.009
  • J. G. G. Manjunatha, J. Food Drug Anal., (2017), https://doi.org/10.1016/j.jfda.2017.05.002
  • H. Beitollahi, H. Karimi-Maleh and H. Khabazzadeh, Anal. Chem. 80, 9848 (2008). https://doi.org/10.1021/ac801854j PMid:19072278
  • S. Tajik, M. Ali Taher and H. Beitollahi, Sens. Actuators B Chem., 197, 228 (2014). https://doi.org/10.1016/j.snb.2014.02.096
  • Z. Taleat, M. M. Ardakani, H. Naeimi, H. Beitollahi, M. Nejati, and H. R. Zare, Anal. Sci., 24, 1039 (2008). https:// doi.org/10.2116/analsci.24.1039 PMid:18689946
  • M. M. Foroughi, H. Beitollahi, S. Tajik, M. Hamzavi, and H. T. Parvan, Int. J. Electrochem. Sci., 9, 2955 (2014).
  • M. Mazloum-Ardakani, B. Ganjipour, H. Beitollahi, M.Kazem Amini, F. Mirkhalaf, H. Naeimi, and M. NejatiBarzoki, Electrochim. Acta., 56, 9113 (2011). https://doi.org/10.1016/j.electacta.2011.07.021
  • S. Mohammadi, H. Beitollahi and A. Mohadesi, Sensor Lett., 11, 388 (2013). https://doi.org/10.1166/sl.2013.2723
  • H. Beitollahi, J. B. Raoof, H. Karimi-Maleh and R. Hosseinzadeh, J. Solid State Electrochem., 16, 1701 (2012). https://doi.org/10.1007/s10008-011-1578-2
  • M. R. Akhgar, H. Beitollahi, M. Salari, H. Karimi-Maleh and H. Zamani, Anal. Methods, 4, 259 (2012).
  • J. G. Manjunatha, B. E. Kumara Swamy and M. Deraman, Anal. Bioanal. Electrochem., 5, 426 (2013).
  • J. G. Manjunatha, B. E. Kumara Swamy, M. T. Shreenivas and G. P. Mamatha, Anal. Bioanal. Electrochem., 4, 225 (2012).
  • C. E. Myers, E. G.Mimnaugh, G. C. Yeh, B. K. Sinha, ‘Anthracycline and anthracenedione-based anticancer agents, J. W. Lown (ed.), Elsevier, Amsterdam, The Netherlands (1988).
  • C. Wu, P. Guo and H. Song, Hua Xi Yi Ke Da Xue Xue Bao, 21, 39 (1990).
  • J. L. Johnson, A. Ahmad, S. Khan, Y. F. Wang, A. W. Abu-Qare, J. E. Ayoub, A. Zhang and I. Ahmad, J. Chromatogr. B, 799, 149 (2004). https://doi.org/10.1016/j.jchromb.2003.10.034
  • K. Reszka, P. Kolodziejczyk and J. W. Lown, J. Free. Radic. Biol. Med., 2, 25 (1986). https://doi.org/10.1016/S07485514(86)80071-X
  • S. M. Golabi and V. Hassan Zadeh, Talanta, 43, 397 (1996). https://doi.org/10.1016/0039-9140(95)01731-3
  • J. B. Hu and Q. L. Li, Chem. J. Chinese. U., 22, 380 (2001).
  • J. C. C. Villar, A. C. García and P. T. Blanco, J. Pharm. Biomed. Anal., 10, 263 (1992). https://doi.org/10.1016/0731-7085(92)80038-O
  • P. V. Venkatesan and B. Nagarajan, J. Clin. Biochem. Nutr., 19, 123 (1995). https://doi.org/10.3164/jcbn.19.123
  • G. Nicolau, V. Szucs-Myers, W. McWilliams, J. Morrison and A. Lanzilotti, Invest. New Drugs, 3, 51 (1985). https:// doi.org/10.1007/BF00176824 PMid:3988457
  • D. G. Nordblom, A. L. Pachla, T. Chang, R. L. Whitfield and H. D. H. Showalter, Cancer Research, 49, 5345 (1989). PMid:2766301
  • B. Hong and Q. Cheng, Adv. Chem. Eng. Sci., 2, 453 (2012). https://doi.org/10.4236/aces.2012.24055
  • B. Hong and Q. Chen, Adv. Che. Eng. Sci., 2, 453 (2012). https://doi.org/10.4236/aces.2012.24055
  • A. M. O. Brett, T. R. A. Macedo, D. Raimundo, M. H. Marques and S. H. P. Serrano, Anal. Chim. Acta., 385, 401 (1999). https://doi.org/10.1016/S0003-2670(98)00807-1
  • Erdem and M. Ozsoz, Turk. J. Chem., 25, 469 (2001).
  • J. G. Manjunatha, J. Electrochem. Sci. Eng., 7, 39 (2017). https://doi.org/10.5599/jese.368

Abstract Views: 249

PDF Views: 5




  • Highly Sensitive Polymer based Sensor for Determination of the Drug Mitoxantrone

Abstract Views: 249  |  PDF Views: 5

Authors

J. G. Manjunatha
Department of Chemistry, FMKMC College, Mangalore University Constituent College, Madikeri – 571201, Karnataka, India

Abstract


A carbon paste electrode modified with electropolymerization of glycine exhibited an attractive performance for the detection and determination of a anticancer drug, Mitoxantrone (MTX). Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) were used in a combined way to identify the electrochemical characteristics and to optimize the conditions for detection of MTX. The electrochemical behaviour of MTX was investigated and a well-defined oxidation peak with high sensitivity was observed at the film electrode. Poly (Glycine) Modified Carbon Paste Electrode (PGMCPE) greatly enhanced the oxidation peak current of MTX owing to the extraordinary properties of glycine film. Based on this, a sensitive and simple voltammetric method was developed for measurement of MTX. A sensitive linear voltammetric response for MTX was obtained in the concentration range of 4×10−8-1×10-5 mol/L, detection limit was 3.2×10−7 M and quantification limit was 10×10−7 M using CV. The proposed method possessed advantages such as low detection limit, fast response, low cost and simplicity.

Keywords


Cyclic Voltammetry, Drug MTX, Poly (Glycine) Modified Paste Carbon Electrode.

References





DOI: https://doi.org/10.18311/jsst%2F2018%2F15838