The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Deep neural network has emerged as one of the most effective networks for modeling of highly non-linear complex real-time systems. The long-short term memory network (LSTM) which is a one of the variants of recurrent neural network (RNN) has been proposed for the identification of a highly nonlinear Maglev plant. The comparative analysis of its performance is carried out with the functional link artificial neural network- least mean square (FLANN-LMS), FLANN-particle swarm optimization (FLANN-PSO), FLANN-teaching learning based optimization (FLANN-TLBO) and FLANN-black widow optimization (FLANN-BWO) algorithm. The proposed LSTM model is a feed forward neural network trained by a simple iterative method called the ADAM algorithm. The obtained results indicate that the proposed network has better performance than the other competitive networks in terms of the MSE, CPU time and convergence rate. To validate the dominance of the proposed network, a statistical tests, i.e. the Friedman test, is also applied.

Keywords

FLANN, Maglev System, Mean Square Error, Recurrent Neural Network, System Identification.
User
Notifications
Font Size