C-Regularization Support Vector Machine for Seed Geometric Features Evaluation *

Xi Jinju$^{a, *}$, Tan Wenxueb

a School of Computer Science, Hunan University of Arts and Science, Changde, 415000, China
Email: 895552128@qq.com

b College of Computer Science, Beijing University of Technology, Beijing, 100022, China
twxhuas@gmail.com

Abstract—People have been utilizing Support Vector Machine (SVM) to tackle the problem of data mining and machine learning related to many practicalities. However, for some training set of multi-group which presents unbalance of the number of samples, a classifier model trained by C-SVM always results in some unbalanced error-rates. Grounded upon analysis of Lagrange multiplier, the paper proposes the Misleading-SV, outer boundary of class, learning-error-rate and other concepts, and formulates the C-Regularization SVM and a method for regularizing slack constant C. Taking aim at wheat seed geometric property evaluation for quality gradation, the project crew develops some test experiments for algorithm validation. The contour analysis reveals the proposed scheme can effectively grade wheat seeds by their geometric features with an precision rate of 96%. Especially against some prior algorithms, result of contrast experiment demonstrates that for the subject with sparse samples, the method for regularizing slack constant can lower the macro classification error-rate of classifier obviously.

Index Terms—C-Regularization; Misleading SV; Intelligent Evaluation; Unbalance; SVM

I. INTRODUCTION

Classification is one of primary data-mining technologies, whose object is to group a sampled data set. All items of the set share a set of sampling features. The similar ones merge into one group, and the dissimilar ones diverge into corresponding classes. Thus, it is a result to discover and recognize a novel, interesting description pattern or prediction model for samples.

Support Vector Machine (SVM), which is a young classification algorithm [1], [2], has become a hot spot of research in the area of machine learning and data mining thanks to its conspicuous performance. For examples, ref. [3] researched into an objective image quality assessment model based on block content and support vector regression and ref. [4] explored the fuzzy support vector machine method for city air quality assessment.

However, as a newborn, developing learning algorithms, SVM has its limitation. A typical case is that the native SVM is still cannot achieve satisfactory results for many data sets from the real world, which are sampled from a collectivity of multi-group, unbalanced, carrying with noise and errors. Specific situations are as follows. As to the subject class with abundant training samples, it exhibits a rather satisfying low error-rate; while as to the objective one with sparse training samples, it presents an unacceptable error-rate.

II. RELATED WORKS

The aforementioned sample set is a so-called unbalanced data set [2], or imbalanced data set [5]. On SVM knowledge mining and classification for unbalanced data, many researchers did a lot of jobs.

Based on AdaBoost strategy, ref. [5] proposed a classifier ensemble and attempted to solve this problem by means of introducing a variable weight for each training sample. Its experiment results grounded on the 2-group data set are amusing, inspiring, but the classification performance for multi-group samples expects a deep-in research.

Ref. [6] brought forward the algorithm $\nu \rightarrow$ SVM, which controls the low bound of the proportion of boundary support vector (BSV) and the upper bound of the proportion of support vector (SV) to the sum of samples by introducing a parameter ν. In case both bounds are unknown, it is difficult to determine ν. As is often the case in the real world and was pointed out by ref. [2].

Some attractive crop features such as yields, the degree of excellence, resistance ability to pests and diseases, and adaptability to mechanized agriculture besides its genetic information are entailed upon offspring through seeds [7], [8]. Thus, seed quality estimation and evaluation becomes a vital and effective measure to expand production of crop. One of important steps for seed quality estimation is evaluating seed geometric features. As it is correlated closely with efficiency of grading seed, to get seed CT image, extract seed geometric features and to research into artificial intelligent estimation of seed geometric property [9] has become a focus of research on smart agriculture technology at home and abroad.

In the natural state, the abnormal samples (samples in both extremes of central distribution) are sparse, while the normal ones are in the majority and have a tendency to significantly overwhelm the abnormal ones quantitatively [10]. An quantitative unbalance of samples leads to an

* Manuscript received on May 20, 2014; revised on August 17; accepted on September 26, 2014. © 2005 IEEE.

This work was funded by Hunan Natural Science Foundation(No. 10JJ5063).

Corresponding author: Xi Jinju, 895552128@qq.com.
uneven expression and transference of knowledge, experiences and information on being learned by a learning machine. In addition to this, the same proportion slack or penalty is imposed on machine learning, which leads to a flood effect from the noise information. As a result, the supervision information from the training objects in a disadvantage quantitative position is undermined and then a low recall rate of geometric property classification and a high mistake rate of qualitative gradation occur.

How to design an appropriate learning algorithm for the training set of unbalanced sparse samples draws professionals' attention. In order to tackle the problem, this paper formulates \(C \)-regularization support vector machine and models the functional of the probability of error learning of the group and its slack \(C \), and then exploits it to evaluate wheat seed geometric property. Contrast experiment results against some prior homologous algorithms suggest it can improve the macro classification precision ratio obviously for sparse unbalanced samples.

III. C-REGULARIZATION SVM

A. Preliminary Definitions

The problem of separation can be modeled by a quadratic optimization problem of \(n \)-dimensional space, which is defined by the following definitions.

Definition 1: Let \(y_i \in \{1,-1\} \) be the class label of sample \(x_i \), and let \(w \) be a normal vector of hyper-plane. \(\xi_i \) is the intercept excursion. Then, \(\{y_i[(w \cdot x_i)+b]-1+\xi_i\} = 0 \) is called the sample plane related to \(x_i \).

Definition 2: If \(\xi_i = 0 \), then the intercept difference of both planes for \(y_i \in \{1,-1\} \) equals to 2. \(x_i \) is said to be a support vector on the boundary (On-Boundary-SV) and its sample plane is called the outer boundary of class \(y_i \).

Definition 3: If \(1 > \xi_i > 0 \), in other words, \(x_i \) is bounded by the inner boundary of class \(y_i \) and the plane \((w \cdot x_i)+b = 0 \) . Then, \(x_i \) is said to be a support vector within the boundaries (Within-Boundary-SV).

Definition 4: If \(\xi_i = 1 \), namely, \(x_i \) satisfies \((w \cdot x_i)+b = 0 \), then, \(x_i \) is said to be a support vector in the decision plane (Decision-Plane-SV) and its sample plane is called the decision plane, which is the inner boundary of both classes \(\{1,-1\} \).

Definition 5: If \(\xi_i > 1 \), as a positive sample goes, it moves down through the decision plane and enters into the zone of class ‘-1’. As a negative sample goes, it penetrate up through the decision plane and enters into the zone of class ‘+1’. And then, \(x_i \) is said to be a support vector through the decision plane (Through-Decision-SV).

The layout of SVs of three aforementioned types relative to decision plane is exhibited by Figure 1. This figure also presents the outer boundary and the inner boundary of class.

Definition 6: As far as the training made from some data set is concerned, a training sample, whose supervision for a learning machine to learn how to classify it correctly is a complete mistake, or has a margin of error, is said to be a misleading SV (MSV). As to the class ‘+1’, positive MSVs cover decision-plane-SV, Through-Decision-SV. Then, the proportion of MSVs to the overall positive training ones is said to be the learning error-rate of learning machine for the positive samples and it is denoted by \(\text{error}_{\text{learn}}(+). \)

Definition 7: As far as a predicting sample set is concerned, the proportion of positive samples predicted mistakenly to the all positive predicting samples is said to be the predicting error-rate of learning machine for the positive samples and is denote by \(\text{error}_{\text{predict}}(+). \)

B. Formulization of C-SVM

Ref. [1] proposed a classification algorithm, i.e. so-called C-SVM, which allows slack for error samples. Its mathematically formalized model is constructed as

\[
\begin{align*}
\min_{w,\xi,\xi_i} & \quad \frac{1}{2}(w \cdot w) + C(\sum_{i=1}^{l} \xi_i)^k, k \geq 1 \\
\text{s.t.} & \quad y_i[(w \cdot x_i)+b] \geq 1 - \xi_i \\
& \quad \xi_i \geq 0, i = 1,2,...l
\end{align*}
\]

C. Learning Error-rate of C-SVM

The constant \(C \) defines the scope of tolerance and indulgence of minimizing training error on maximizing margin between groups [11]. However, on determining its magnitude, users usually leave quantitative balance of the sample set of the subject classes out of consideration. And then C-SVM equally treats each sample, which is the root of the problem of uneven error-rates where sample sizes of the involved classes are unbalanced [12], [13]. For instance, once the samples from class ‘+1’ are far fewer than those from class ‘-1’, C-SVM will obtain a result that the magnification of training error for class ‘+1’ is far less than that of class ‘-1’.

According to ref. [14], for the learning machine defined by (1) one has the theorem as follows.
Theorem 1: Let \(Q^+, Q^- \) be the number of positive and negative samples apart. one obtains

\[
\text{error}_{\text{learn}}(+) \cdot Q^+ \approx \text{error}_{\text{learn}}(-) \cdot Q^-.
\]

(2)

D. Regularization of slack C

According to equality (2), the model trained from imbalanced data set is a classifier with disproportionate error rates. The essential cause is that C-SVM loses sight of the difference in size of samples from different class and impacts an even slack on them while training.

Let \(\psi^+ \geq 1, k \) be the slack class regularization coefficients \((\psi^+, \psi^-)\) for two-class. Rewrite Lagrangian of (1) after regularizing slack factor as

\[
L(A, w, \xi, B, b) = \frac{1}{2}(w \cdot w) + C_\psi^+ \sum_{i=1}^l \xi_i - \sum_{i=1}^l \alpha_i [y_i((w \cdot x_i) + b) - 1 + \xi_i] - \sum_{i=1}^l \beta_i \xi_i,
\]

(3)

where \(A^T = (\alpha_1, \alpha_2, \cdots, \alpha_l), B^T = (\beta_1, \beta_2, \cdots, \beta_l) \) are the vector of non-negative Lagrange multipliers corresponding to the constraint (9).

At first, a feasible solution must be a zero point of gradient with respect to original variables, one obtains

\[
\frac{\partial L}{\partial w}_{|w = w_0} = w_0 - \sum_{i=1}^l \alpha_i y_i x_i = 0,
\]

(4)

\[
\frac{\partial L}{\partial b}_{|b = b_0} = \alpha_y y_i = 0,
\]

(5)

\[
\frac{\partial L}{\partial \xi_i}_{|\xi_i = \xi^0} = C_\psi^+ - \alpha_i - \beta_i = 0.
\]

(6)

The object function must be under constraints

\[
y_i((w \cdot x_i) + b) - 1 + \xi_i \geq 0, \quad \xi_i \geq 0, \quad i = 1, \cdots, l,
\]

(7)

\[
\alpha_i \geq 0, \quad \beta_i \geq 0, \quad \xi_i \geq 0, \quad i = 1, \cdots, l,
\]

(8)

\[
\alpha_i y_i((w \cdot x_i) + b) - 1 + \xi_i = 0, \quad i = 1, \cdots, l.
\]

(9)

Theorem 2: For the learning machine defined by (3), the learning error-rate satisfies

\[
\text{error}_{\text{learn}}(+) \cdot Q^+ \psi^- \approx \text{error}_{\text{learn}}(-) \cdot Q^- \psi^-.
\]

(11)

Proof: Substituting (4) into (3), we obtain

\[
L(A, \xi, B, b) = \frac{1}{2}(w_0 \cdot w_0) + C_\psi^+ \sum_{i=1}^l \xi_i - \sum_{i=1}^l \alpha_i [y_i((w_0 \cdot x_i) + b) - 1 + \xi_i] - \sum_{i=1}^l \beta_i \xi_i.
\]

(12)

It can be rewritten as

\[
L(A, \xi, B, b) = -\frac{1}{2}(w_0 \cdot w_0) + C_\psi^+ \sum_{i=1}^l \xi_i - \sum_{i=1}^l \alpha_i y_i + \sum_{i=1}^l \alpha_i - \sum_{i=1}^l (\alpha_i + \beta_i) \xi_i.
\]

(13)

Substituting the expression for \(\alpha_i + \beta_i \) into (13), we obtain

\[
L(A, \xi, B, b) = -\frac{1}{2}(w_0 \cdot w_0) + C_\psi^+ \sum_{i=1}^l \xi_i - \sum_{i=1}^l \alpha_i y_i + \sum_{i=1}^l \alpha_i - C_\psi^+ \sum_{i=1}^l \xi_i.
\]

(14)

Reducing its congruent elements, and substituting the expression for \(\alpha_i y_i, w_0 \), we obtain

\[
L(A) = -\frac{1}{2} \sum_{i=1}^l \sum_{j=1}^l \alpha_i y_i y_j x_j \cdot x_i + \sum_{i=1}^l \alpha_i.
\]

(15)

\(M \) is a matrix and \(M_{ij} = y_i y_j x_j \cdot x_i \). In vector notation, (15) can be rewritten as

\[
L(A) = \sum_{i=1}^l \alpha_i - \frac{1}{2} A M A^T.
\]

(16)

(15) is a unitary functional of \(A \) ,which and \(B \) are dual variables of \(w, b, \xi \). If the original minimization problem has one or multi feasible solutions, then the dual maximization problem is sure to be solvable under constraints

\[
AY = 0,
\]

(17)

\[
A + B = C_\psi^+ 1,
\]

(18)

\[
A \geq 0,
\]

(19)

\[
B \geq 0,
\]

(20)

\[
\beta_i \xi_i = 0.
\]

(21)

From the equality (18), we find there exist \(x_i \) of 3 cases as follows.

Case 1: \(\alpha_i = 0 \). Then \(y_i((w \cdot x_i) + b) - 1 + \xi_i \geq 0, \) and \(C_\psi^+ \beta_i \) is nonzero. \(\xi_i = 0, \) \(y_i((w \cdot x_i) + b) - 1 \geq 0, \) \(x_i \) keeps clear of or locates in the outer boundary of class and it is classified correctly.

Case 2: \(0 < \alpha_i < C_\psi^+ \). \(y_i((w \cdot x_i) + b) - 1 + \xi_i = 0 \) is satisfied and \(C_\psi^+ - \alpha_i = \beta_i \) is nonzero. Thus \(\xi_i = 0, \) \(y_i((w \cdot x_i) + b) - 1 \) \(x_i \) locates in the outer boundary of class and it is classified correctly. The intercept difference of 2 class boundary is \(2, x_i \) is an exact SV (SV toe).

Case 3: \(\alpha_i = C_\psi^+ \). \(y_i((w \cdot x_i) + b) - 1 + \xi_i = 0 \) and \(\beta_i = 0 \). Thus \(\xi_i > 0 \) one finds there exist support vectors of 3 cases as follows.

\(0 < \xi_i < 1, \) \(x_i \) locates between the decision plane and the outer boundary plane of class. \(x_i \) is a within-boundary-SV (SV). It is classified correctly, but classification margin is unsatisfactory. \(\alpha_{i^{SV}} \) denotes \(\alpha_i \) for \(x_i \) from class \(y_i = 1, \)

\(\xi_i = 1 \), \(x_i \) locates on the decision plane. \(x_i \) is a decision-SV(SV). Its classification label is uncertainty. The supervision from \(x_i \) is an unreliable. \(x_i \) is a MSV (SV toe). \(\alpha_{i^{SV}} \) denotes \(\alpha_i \) for \(x_i \) from class \(y_i = 1, \)

\(\xi_i > 1 \), \(x_i \) crosses decision plane and enter into the zone of the opposite class of itself. It is a through-boundary-SV (SV toe). Its classification label is wrong.
The supervision from \(x_i \) is a sheer mistake. \(x_i \) is a MSV. \(\alpha_{i,\text{out}^+} \) denotes \(\alpha_i \) for \(x_i \), where \(y_i = 1 \).

We construct a sum as
\[
D^+ = \sum \alpha_{i,\text{out}^+} + \sum \alpha_{i,\text{in}^+} + \sum \alpha_{i,\text{on}^+}.
\]

\(SV^+ \) represents the quantity of positive support vector as
\[
SV^+ = SV_{q,\text{in}^+} + SV_{q,\text{on}^+} + SV_{q,\text{on}^+},
\]
where \(SV_{q,\text{on}^+} \) is the number of positive MSV. We obtains
\[
SV_{q,\text{on}^+} = SV_{q,\text{in}^+} + SV_{q,\text{out}^+}. \tag{24}
\]

Under the constraint \(\alpha_i < C\psi^* \), we obtain
\[
SV^+ \cdot \psi^* \geq D^+ \geq SV_{q,\text{on}^+}, C\psi^* + C\psi^* . \tag{25}
\]

Both sides of (25) is divided by \(Q^+ \cdot C\psi^* \) and one obtains
\[
\frac{SV_{q,\text{on}^+}}{Q^+} \leq \frac{D^+}{Q^+}, C\psi^* \leq \frac{SV_{q,\text{in}^+}}{Q^+}. \tag{26}
\]

Watching the centered item of (26), one can conclude that if all the positive samples are support vectors but not MSV, then its denominator is the sum of Lagrange multipliers for all positive samples. It means that either all positive samples are classified mistakenly or their classification results are unreliable. These two cases belong to the school of wrong machine supervision. If \(D^+ = Q^+ \cdot C\psi^* \), the ratio is 1.

The lower boundary of (26) is the ratio of the number of positive MSVs to the number of all positive samples. It is the minimum of error rate. The upper boundary of (26) is the ratio of the number of positive support vector to the number of all positive samples, which is the maximum of error rate. It is apprehensible that the practical error rate is some value between the minimum and the maximum. The centered item is an asymptote of the error-rate of supervision on machine.

We construct \(\text{error}_{\text{learn}} \) as
\[
\text{error}_{\text{learn}}(+) \approx \frac{D^+}{Q^+}, C\psi^*. \tag{27}
\]

Similarly, for the negative class one obtains
\[
\text{error}_{\text{learn}}(-) \approx \frac{D^-}{Q^+}, C\psi^*. \tag{28}
\]

From equality (5), we obtain
\[
\sum y_i = 1 \sum \alpha_i y_i = D^+ - D^- = 0. \tag{29}
\]

Translating (27) and (28) by (29), one obtains
\[
\text{error}_{\text{learn}}(+) \cdot Q^+ \psi^* \approx \text{error}_{\text{learn}}(-) \cdot Q^- \psi^*. \tag{30}
\]

Theorem 2 points it out that: as far as quantitative imbalance of training samples is concerned, error-rate \(\text{error}_{\text{learn}} \) of SVM learning machine for the concerned classes can approach equally. Ref. [14] pointed it out \(\text{error}_{\text{learn}} \) can approximate \(\text{error}_{\text{predict}} \) on condition that samples for learning and prediction are sampled from the collectivity at random. Namely, SVM can obtain an identical prediction precision by and large from unbalanced training sets. The precondition is to introduce the slack coefficient \(\psi^* \) to regularize \(C \) and to balance quantity of class supervision error by the equality (31).

\[
Q^+ \cdot \psi^* = Q^+ \cdot \psi^* \tag{31}
\]

IV. EXTRACTION OF GEOMETRIC FEATURES OF SEED

Some experimental fields are picked out at random, where some wheat seeds are singled out and evaluated by some experts on seed-breeding according to their quality and character [12]. The first round of evaluation is separating them into 3 grades according to geometric feature. Grade system consists of 3 grades. The top-ranking is denoted by ‘X’, the good is denoted by ‘Y’ and the rejected is denoted by ‘Z’. Each seed sample is numbered and its class label is recorded. The decisive grade of a sample is voted by a group of experts.

After dispersing and arranging seeds in good order, we take photo of the seeds by X-Ray tomography free damage to them and get a black-white film in size 13 \(\times \) 18cm. The project crew samples 280 items of data about geometric parameters of seed grains using computer image technology. On feature framework, we adopt the proposal in ref. [15]. Figure 2 exhibits the basic process of extracting geometric features of wheat seed.

V. DATA PREPROCESSING AND PARAMETER OPTIMIZATION

Algorithm routine testing is performed in some real inputs, which are between the interval [0, 1] . In order to avoid exception, we preprocess each sample attribute datum and make their value non-negative. The minimum is mapped to 0 and the maximum is mapped to 1 [16], [17]. Figure 3 exhibits the scatter of a fraction of processed data in the coordinates, which consists of the 3 principal components of features.

For a kernel function, the Radial Basis Function (RBF) [18] is selected, i.e.
\[
K(x_i, x_j) = e^{-\gamma|x_i - x_j|^2} \tag{32}
\]

Given a data-set, what combination of parameters \(\log_2C, \log_2\gamma \) will achieve the best classification effect must be considered carefully. We take a advice to search it in a parameter grid toward the direction of increasing the accuracy of cross-validation. In addition, as to multi-object classification problem, 1-to-1 method is used [19].

Figure 4 exhibits a precision contour from the searching course in a grid of combination parameter. It can be seen that where \(C \approx 256, \gamma \approx 0.0312 \), the overall precision is up to 96% and the inferior accuracy is up to 94.98%. On the whole, the refined SVM is satisfactorily effective to grade seeds data set. For a convenience to contrast experiment performance, we simulate an quantitative imbalance, where the ratio of the number of ‘X’, ‘Y’ and ‘Z’ is set 10:2:1.
VI. RESULTS AND DISCUSSION

A. Comparing error rate

We practice contrast experiment between this method (This) and schemes from ref. [1] (α) and ref. [6] (β), using the optimal parameter combination aforementioned. For the training data set, the number of 3 class samples, are 60, 12, 6 respectively. We use the model from algorithm α to predict a sample data set where the numbers of samples which includes 210 testing samples sampled from 3 classes equally.

Figure 5 reveals that 32 of the tested ‘X’ samples are separated correctly, and 38 of them are separated mistakenly. error\text{_predict}(Z) is 54.29%. In comparison, the mean of error-rate from this method is 8.09% and error\text{_predict}(Z) is 17.14%, where regularization coefficient ψC=10.

As far as sparsity and unbalance of training samples is concerned, in parallel with α and β, The proposed can improve the mean prediction error-rate by a comfortable margin. It is discovered that the equality (31) assuredly plays a role of direction in adjusting regularization coefficient.

B. Analysis of SV-distribution

We adopt another artificial data set of 500 samples, which shares an quantitative imbalance in distribution proportion among groups with the first experiment. The purpose of this experiment is to observe the changes of the distribution of SVs for the model from the concerned methods. XY, XZ and YZ denote 3 decision-planes for classifiers from three-group training set apart. SV_{XZ} is the sum of support vectors for XZ and MSV_{XZ} is the total of MSVs for XZ. ρ_{XZ} = MSV_{XZ}/SV_{XZ}. Connotation of other symbols is on the analogy of the aforementioned.

Figure 6 records the statistics collected from this experiment. It can be seen that ρ_{XZ}, ρ_{YZ} from α are biggest respectively, those from β are in the second place individually, and those from this scheme are the lowest apart. Using C regularization, the ratio of the MSVs to the total of SVs is lowered significantly, which drives error-rate of model down.

C. Stress experiment and over-regularization

Will the error-rate of the subject provided sparse samples continue to be decreased or not? What is the fluctuation of the error-rate corresponding to the subject on condition of whose ψ∗ is kept on being increased? In this experiment, the class Z is singled out as the focus of observation, for its sparsity and quantitative unbalance is the most representative.

TABLE I shows the statistics from the stress experiment. At the start, error\text{_predict}(Z) decreases with a rapid increase of ψZ. When it reduces to a local minimum value 11.42%, it rebounds by a narrow margin, and then converges to a stable value 17.14%.

Obviously, error rate of learning machine is not decreased endlessly with a increasing ψZ. The subsequent
regularization over the critical position is not conducive to improving the generalization ability of machine. A rational explanation is that regularization is just a remedial step, and does not make wise supervision on a classifier. We shall take an acceptable error-rate into more consideration from the perspective of learning effect [20], [21], than balancing learning error by ψ^*.

D. Stress experiment of the number of sparse samples

Similarly, TABLE II records the data of stress experiment about error-prediction rate corresponding to Z class

<table>
<thead>
<tr>
<th>coefficient ψ</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>error-predict(%)</td>
<td>54.28</td>
<td>21.42</td>
<td>11.42</td>
<td>14.28</td>
</tr>
</tbody>
</table>

TABLE II.
STRESS EXPERIMENT OF $\text{error}_{\text{predict}}(Z) - Q^Z$.

<table>
<thead>
<tr>
<th>Num. of samples</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>error-predict(%)</td>
<td>54.28</td>
<td>30</td>
<td>12.85</td>
<td>11.42</td>
</tr>
<tr>
<td>Num. of samples</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>48</td>
</tr>
<tr>
<td>error-predict(%)</td>
<td>7.14</td>
<td>7.14</td>
<td>7.14</td>
<td>7.14</td>
</tr>
</tbody>
</table>

with the number of its learning samples. One can discover that at the beginning, $\text{error}_{\text{predict}}(Z)$ is lowered quickly with the increase of Q^Z, and then it reduces gently, and at last converges to a stable value. Generalization ability has an analogy to error-rate. Namely, after it is developed to perfection it slowly approaches to a stable value. SVM is an algorithm based on the supervised learning. If there are provided more supervising samples, it is not strange that the machine can learn more knowledge about ‘the targeted concept’, comprehend it more accurately and group the testing samples more correctly [22], [23]. This accords with principle of induction learning.

Even in the case of quantitative unbalance of learning samples, from the perspective of learning and transference of knowledge, it is worth encouraging a user to do one’s best to increase the number of samples for sparse subject on purpose to obtain a better training effect [24].

VII. CONCLUSIONS

Different subject classes often sampled in unbalanced number of training samples. However, the error-rate disparity of classifier based on C-SVM can be smoothened or weakened. For such a learning problem, we proposes some novelty concepts, such as within-boundary SV, through-boundary SV, decision-SV and error learning rate, in addition to pioneer an idea of misleading support vector and to build its independence from BSV [2]. On this basis, C-regularization support vector machine algorithm is formulated based on analysis of Lagrange multiplier. We bring the algorithm into the practice of evaluating data-set of seed geometric feature. Result suggests the error-rate of the classifier is lowered significantly while the overall classification performance is refined by a comfortable margin. It demonstrates the proposed learning algorithm is effective and available. Specifically, the following are its obvious, best features.

1. Analysis of precision contour reveals the method can evaluate seed by its geometric features at a precision rate of 96%. As to an quantitatively unbalanced training sample set, for the subject class sampled with sparse samples, the proposed algorithm can raise learning effect to a more desirable level under the premise of stabilizing overall performance than several popular algorithms.

2. Statistics from stress experiment shows that error-rate and generalization ability of learning machine converges rapidly with regularization coefficient and sample size. A piece of advice to user is to layout regularization coefficient rationally in accordance with a quantitative profile of sample set.

On the whole, the method makes it better the classification performance of SVM to the training sample.
set which presents a quantitative imbalance. It is of a positive practical significance for developing intelligent system on crop seed quality gradation and researching on the artificial intelligence evaluation technology.

ACKNOWLEDGMENT

This work was funded by Hunan Natural Science Foundation(No. 10JJ5063).

REFERENCES

[2] L. P. S. Z.-h. ZHENG En-hui, XU Hong, “Mining knowl-
edge from unbalanced data based on-support vector ma-
chine,” Journal of Zhijiang University(Engineering Sci-
[5] Y. Y. YUAN XingMei, YANG Ming, “An ensemble classi-
 fier based on structural support vector machine for imbal-
Bartlett, “New support vector algorithms,” NEURAL COM-