Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Instability of MHD Fluid Flow through a Horizontal Porous Media in the Presence of Transverse Magnetic Field - A Linear Stability Analysis


Affiliations
1 Department of mathematics, M S Ramaiah Institute of Technology, MSR Nagar, Bangalore-560054, India
     

   Subscribe/Renew Journal


The study was to conduct a stability analysis of pressure driven ow of an electrically conducting fluid through a horizontal porous channel in the presence of a transverse magnetic field. We employed the Brinkman-extended Darcy model with fluid viscosity is different from effective viscosity. In deriving the equations governing the stability, a simplication is made using the fact that the magnetic Prandtl number Prm for most of the electrically conducting fluids is assumed to be small. Using the Chebyshev collocation method, the critical Reynolds number Rec, the critical wave number αc and the critical wave speed cc are computed for various values of the parameters present in the problem. The neutral curves are drawn in the (Re, α)- plane for various values of the non-dimensional parameters present in the problem. This study also tells how the combined effect of the magnetic field strength and the porosity of the porous media to delay the onset of instability compare to their presence in isolation. In the absence of some parameters, the results obtained are compared with the existed results to check the accuracy and validity of the present study. An excellent agreement is observed with the existed results.

Keywords

Brinkman Model, Chebyshev Collocation, Porous Media, Stability.
Subscription Login to verify subscription
User
Notifications
Font Size


  • P. G. Drazin, W. H. Reid, Hydrodynamic stability, Cambridge, U. K: Cambridge University Press (2004).
  • R. C. Lock, the stability of the flow of an electrically conducting fluid between parallel planes under a transverse magnetic field, Proc. Roy. Soc. Lond., A233, (1955), 105.
  • Potter M. C and Kudtchey J. A., Stability of plane Hartmann flow subject to a transverse magnetic field,Phy. Fluids., 16(11), (1973), 1848.
  • J.T. Stuart, On the stability of viscous flow between parallel planes in the presence of a coplanar magnetic field, Proc. R. Soc. London, Ser. A 221 (1954), 189-206.
  • J.C.R. Hunt, On the stability of parallel flows with parallel magnetic fields, , Proc. R. Soc. London, A293 (1966), 342-358.
  • F.D. Hains, Stability diagrams for magnetogasdynamics channel flow, Phy. Fluids, 8 (1965) 2014-2019.
  • D. S Krasnov, E Zienicke and O Zikanov, Numerical study of the instability of the Hartmann layer, J. Fluid Mech, 504 (2004), 183- 211.
  • S. A Orszag, Accurate solution of the Orr-Sommerfeld stability equation, J. Fluid Mech, 50 (1974), 689-703.
  • M. Takashima, The stability of the modified plane Poiseuille flow in the presence of a transverse magnetic field, Fluid Dyn. Res., 17 (1996), 293-310.
  • O. D Makinde , P.Y Mhone, Temporal stability of small disturbances in MHD Jeffery-Hamel flows, Comp. Math. Appl., 53 (2007), 128-136.
  • O.D. Makinde , On the Chebyshev collocation spectral approach to stability of fluid flow in a porous medium, Int. J. Numer. Meth. Fluids, 59 (2009), 791-799.
  • D.A. Nield , The stability of flow in a channel or duct occupied by a porous medium, Int. J. Heat Mass Transfer, 46 (2003), 4351-4354.
  • B.M Shankar , J Kumar, I.S Shivakumara, C.O. Ng., Stability of fluid flow in a Brinkman porous medium - A numerical study, Journal of Hydrodynamics, 26 (2014), 681-688.
  • B. Straughan, A. J Harfash, Instability in Poiseuille flow in a porous medium with slip boundary conditions, Microfluid Nanofluid, 15 (2013), 109-115.
  • A. A. Hill and B. Straughan , Stability of Poiseuille flow in a porous medium, Adv. Math. Fluid Mech. (2010), 287-293.
  • D. A Nield , A Bejan, Convection in porous media[M],New York: Springer Verlag, 2013.
  • A.V. Proskurin, A.M. Sagalakov, Stability of poiseuille flow in the presence of a longitudinal magnetic field, J. Appl. Mech. Tech. Phy., 49 (2008), 383-390.
  • P. M. Balagondar and M. S. Basavaraj, Magnetohydrodynamic stability of couple stress fluid flow in a horizontal channel, Int. J. Math. Arch., 5(6) (2014), 1-10.
  • P. M. Balagondar and M. S. Basavaraj, Stability of magnetohydrodynamic flow of viscous fluid in a channel occupied by a porous medium, Journal of Arts and Science, 3(28) (2014), 263-274.
  • M. Takashima, The stability of natural convection in a vertical layer of electrically conducting fluid in the presence of transverse magnetic field, Fluid Dyn. Res., 14 (1994), 121-134.

Abstract Views: 10

PDF Views: 0




  • Instability of MHD Fluid Flow through a Horizontal Porous Media in the Presence of Transverse Magnetic Field - A Linear Stability Analysis

Abstract Views: 10  |  PDF Views: 0

Authors

M. S. Basavaraj
Department of mathematics, M S Ramaiah Institute of Technology, MSR Nagar, Bangalore-560054, India

Abstract


The study was to conduct a stability analysis of pressure driven ow of an electrically conducting fluid through a horizontal porous channel in the presence of a transverse magnetic field. We employed the Brinkman-extended Darcy model with fluid viscosity is different from effective viscosity. In deriving the equations governing the stability, a simplication is made using the fact that the magnetic Prandtl number Prm for most of the electrically conducting fluids is assumed to be small. Using the Chebyshev collocation method, the critical Reynolds number Rec, the critical wave number αc and the critical wave speed cc are computed for various values of the parameters present in the problem. The neutral curves are drawn in the (Re, α)- plane for various values of the non-dimensional parameters present in the problem. This study also tells how the combined effect of the magnetic field strength and the porosity of the porous media to delay the onset of instability compare to their presence in isolation. In the absence of some parameters, the results obtained are compared with the existed results to check the accuracy and validity of the present study. An excellent agreement is observed with the existed results.

Keywords


Brinkman Model, Chebyshev Collocation, Porous Media, Stability.

References