Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Weighted β−absolute Convergence of Single and Double Walsh−Fourier Series of Functions of Φ − ∧ −BV


Affiliations
1 Department of Science and Humanities, Tatva Institute of Technological Studies, Arvalli, India
2 Department of Mathematics, The Maharaja Sayajirao University of Baroda, Vadodara, India
     

   Subscribe/Renew Journal


For one variable function of Φ − ∧−bounded variation on [0,1] the sufficient condition for the weighted β−absolute convergence of its Walsh−Fourier series ∑m γm| ˆ f(m)|β, where 0 < β < 2 and {γm} is a weighted sequence, is obtained and is extended for two dimensional analogue.

Keywords

Absolute Convergence, Walsh−Fourier Series, Functions of φ − ∧−Bounded Variation.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Darji, K. N. and Vyas, R. G., A note on Walsh−Fourier coefficients, Bull. Math. Anal. Appl., 4 (2) (2012), 116−119.
  • Darji, K. N. and Vyas, R. G., On absolute convergence of double Walsh−Fourier series, Indian J. Math., 60 (1) (2018), 45−65.
  • Gogoladze, L. and Meskhia, R., On the absolute convergence of trigonometric Fourier series, Proc. A. Razmadze Math. Inst., 141 (2006), 29−40.
  • Golubov, B., Efimov, A. and Skvortsov, V., Walsh Series and Transforms: Theory and Applications, Springer Science+Business Media Dordrecht, 1991.
  • McLaughlin, J. R., Absolute convergence of series of Fourier coefficients, Trans. Amer. Math. Soc., 184 (1973), 291−316.
  • M´oricz, F., Absolute convergence of Walsh−Fourier series and related results, Anal. Math., 36 (4) (2010), 275−286.
  • M´oricz, F. and Veres, A., Absolute convergence of double Walsh−Fourier series and related results, Acta Math. Hungar., 131 (1) (2011), 122−137.
  • M´oricz, F. and Veres, A., Absolute convergence of multiple Fourier series revisited, Anal. Math., 34 (2) (2008), 145−162.
  • U´lyanov, P. L., Series with respect to a Haar system with monotone coefficients (in Russian), Izv. Akad. Nauk. SSSR Ser. Mat., 28 (1964), 925−950.
  • Vyas, R. G., On the absolute convergence of Fourier series of functions of ΛBV (p) and ϕΛBV , Georgian Math. J., 14 (4) (2007), 769−774.
  • Vyas, R. G. and Darji, K. N., On absolute convergence of multiple Fourier series, Math. Notes, 94 (1) (2013), 71−81; Russian transl., Mat. Zametki, 94 (1) (2013), 81−93.
  • Vyas, R. G. and Darji, K. N., On multiple Fourier coefficients of functions of φ − Λ−bounded variation, Math. Inequal. Appl., 17 (3) (2014), 1153-1160.
  • Vyas, R. G. and Darji, K. N., On multiple Walsh−Fourier coefficients of functions of φ − Λ−bounded variation, Arab. J. Math., 5 (2) (2016), 117−123.
  • Waterman, D., On convergence of Fourier series of functions of generalized bounded variation, Studia Math., 44 (1972), 107−117.

Abstract Views: 45

PDF Views: 4




  • Weighted β−absolute Convergence of Single and Double Walsh−Fourier Series of Functions of Φ − ∧ −BV

Abstract Views: 45  |  PDF Views: 4

Authors

Kiran N. Darji
Department of Science and Humanities, Tatva Institute of Technological Studies, Arvalli, India
Rajendra G. Vyas
Department of Mathematics, The Maharaja Sayajirao University of Baroda, Vadodara, India

Abstract


For one variable function of Φ − ∧−bounded variation on [0,1] the sufficient condition for the weighted β−absolute convergence of its Walsh−Fourier series ∑m γm| ˆ f(m)|β, where 0 < β < 2 and {γm} is a weighted sequence, is obtained and is extended for two dimensional analogue.

Keywords


Absolute Convergence, Walsh−Fourier Series, Functions of φ − ∧−Bounded Variation.

References