Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

A Record of Ductile Syn-Intrusional Fabrics to Post Solidification Cataclasis: Magnetic Fabric Analysis of Neoproterozoic Mirpur and Mt. Abu Granitoids, NW India


Affiliations
1 Geozentrum Nordbayern, Universitat Erlangen-Nuernberg, Schlossgarten 5, D-91054 Erlangen, Germany
2 Department of Geology, University of Rajasthan, Jaipur - 302004, India
3 Department of Geology, Government Postgraduate College, Sirohi - 307001, India
     

   Subscribe/Renew Journal


The Mirpur granite body represents a relatively small (10 km2) pluton intruded along the northern margin of the adjacent Mt. Abu batholith (∼125 km2) in NW India. It is a visibly undeformed alkali feldspar rich pink granite; in contrast, the Mt. Abu is a composite granitoid body and variably deformed. Both are intruded by rhyolitic dykes and the terminal magmatic events in both the cases are mafic dykes. The AMS (Anisotropy of Magnetic Susceptibility) data identify the Mt. Abu with SE-dipping foliations and subvertical lineations as a single structural domain while the Mirpur granite body shows two domains characterized by predominantly E - W trend of magnetic foliation in the eastern part (domain I) and N - S orientations in the western part (domain II). The domain I shows magmatic fabrics, typical for the peraluminous granites of Malani Igneous Suite (MIS). Change in fabric orientation in the domain II has resulted from cataclasis wherein the samples show destruction of the original E - W fabric and complete transposition by N - S trends. The foliations in the Mt. Abu granites have been related to SE orientation of maximum horizontal stress. The same maximum stress direction can be inferred from dyke orientation in the Mirpur granite, which is interpreted as continuation of the tectonic imprint in this region during emplacement of both the granites. Age of the cataclastic overprint with a predominant N - S orientation is not yet constrained but corresponds with the trend of the nearby Sindreth basin within the Malani Igneous Suite. The Neoproterozoic tectonic scenario for the region has been interpreted in terms of an ongoing crustal convergence and granitic magma emplacement against the back stop offered by the rigid Delhi Fold Belt.

Keywords

Anisotropy of Magnetic Susceptibility, Cataclasis, Mirpur Granite, Mt. Abu, NW India.
Subscription Login to verify subscription
User
Notifications
Font Size

  • ARZI, A.A. (1978) Critical phenomena in the rheology of partially melted rocks. Tectonophysics, v.44, pp.173-184.
  • ASHWAL, L.D., DEMAIFFE, D. and TORSVIK,T.H. (2002) Petrogenesis of Neoproterozoic granitoids and related rocks from the Seychelles: evidence for the case of an Andean-type arc origin. Jour. Petrol., v.43, pp.45-83.
  • BENN, K., PATERSON, S.R., LUND, S.P., PIGNOTTA, G.S. and KUSE, S. (2001). Magmatic fabrics in batholiths as markers of regional strains and plate kinematics: example of the Cretaceous Mt. Stuart batholith. Physics and Chemistry of the Earth, Part A. Solid Earth and Geodesy, v.26, pp.343-354.
  • BHUSHAN, S.K. (2000) Malani rhyolites-a review. Gondwana Res., v.3, pp.65-77.
  • BHUSHAN, S.K. (1984) Classification of Malani Igneous Suite. Geol. Surv. India Spec. Publ., v.12, pp.199-205.
  • BORRADAILE, G.J. and HENRY, B. (1997) Tectonic application of magnetic susceptibility and its anisotropy. Earth Sci. Rev., v.42, pp.49-93.
  • BOUCHEZ, J.L. (1997) Granite is never isotropic: an introduction to AMS studies of granitic rocks. In: J.L. Bouchez, D.H.W. Hutton, and W.E. Stephens (Eds.), Granite: from segregation of melt to emplacement fabrics. Petrol. Struc. Geol., v.8, pp.95-112.
  • BOUCHEZ, J.L., GLEIZES, G., DJOUADI, T. and ROCHETTE, P. (1990) Microstructure and magnetic susceptibility applied to emplacement kinematics of granites: the example of the foix pluton (French pyrenees), Tectonophysics, v.184, pp.157-171.
  • BOUILLIN, J.P., BOUCHEZ, J.L., LESPINASSE, P. and PECHER,A. (1993) Granite emplacement in an extensional setting: an AMS study of the magmatic structures of Monte Capanne (Elba, Italy) Earth Planet. Sci. Lett., v.118, pp.263-279.
  • CANON-TAPIA, E. (1996) Single-grain versus distribution anisotropy: a simple three-dimensional model. Phys. Earth Planet. Inter., v.94, pp.149-158.
  • CHADIMA, M., HANSEN,A., HIRT,A.M., HROUDA, F. and SIEMES, H. (2004) Phyllosilicate preferred orientation as a control of magnetic fabric: evidence from neutron texture geometry and low and high-field magnetic anisotropy (SE Rhenohercynian Zone of Bohemian Massif). In: F. Martin-Hernandez, C.M. Lüneburg, C. Aubourg and M. Jackson (Eds.), Magnetic Fabric: Methods and Applications. Geol. Soc. London, Spec. Publ., v.238, pp.361-380.
  • CHOUDHARY, A.K., GOPALAN, K. and SASTRY, C.A. (1984) Present status of the geochronology of Precambrian rocks of Rajasthan. Tectonophysics, v.105, pp.131-140.
  • DE WALL, H. and PANDIT, M.K. (2007) Synkinematic intrusion of Mt. Abu granitoids, NW India: a combined microstructural and AMS study. Geotectonic Res., v.95, pp.87-95.
  • DEB, M., THORPE, R.I., KRSTIC, D., CORFU, F. and DAVIS, D.W. (2001) Zircon U-Pb and galena Pb isotope evidence for an approximate 1.0 Ga terrane constituting the western margin of the Aravalli-Delhi orogenic belt, northwestern India. Precambrian Res., v.108, pp.195-213.
  • DJOUADI, M.T., GLEIZES, G., FERRE, E., BOUCHEZ, J.L., CABY, R. and LESQUER, A. (1997) Oblique magmatic structures of two epizonal granite plutons, Hoggar, Algeria: late-orogenic emplacement in a transcurrent orogen. Tectonophysics, v.279, pp.351-374.
  • EBY, N. and KOCHHAR, N. (1990) Geochemistry and petrogenesis of the Malani Igneous Suite, northern India. Jour. Geol. Soc. India, v.36, pp.109-130.
  • ELLWOOD, B.B. (1978) Flow and emplacement direction determined for selected basaltic bodies using magnetic susceptibility anisotropy measurements. Earth Planet. Sci. Lett., v.41, pp.254-264.
  • GAILLOT, P., DE SAINT-BLANQUAT, M. and BOUCHEZ, J.L. (2006) Effects of magnetic interactions in anisotropy of magnetic susceptibility: Models, experiments and implications for igneous rock fabrics quantification. Tectonophysics, v.418, pp.3-19.
  • GREGORY L.C., MEERT J.G, BINGEN B., PANDIT M.K. and TORSVIK, T.H. (2009) Paleomagnetism and geochronology of the Malani Igneous Suite, northwest India: implications for the configuration of Rodinia and assembly of Gondwana. Precambrian Res., v.170, pp.13-26.
  • GREILING, R.O., GRIMMER, J.C., DE WALL, H. and BJORK, L. (2007) Mesoproterozoic dyke swarms in Central Scandinavia, their distribution, Caledonian overprint and geochemistry. Geol. Magz., v.144, pp.525-546.
  • GUDMUNDSSON, A. (1995) The geometry and growth of dykes. In: G. Baer and A. Heimann (Eds.), Physics and Chemistry of Dykes, Balkema, Rotterdam, pp.23-34.
  • GUDMUNDSSON A. and MARINONI, L.B. (1999) Geometry, emplacement, and arrest of dykes. Annales Tectonicae, v.13, pp.71-92.
  • GUPTA S.N., ARORA Y.K., MATHUR R.K., IQBALLUDDIN, PRASAD, B., SAHAI, T.N. and SHARMA, S.B. (1980) Lithostratigraphic map of Aravalli region. Geol. Surv. India, Hyderabad.
  • GUPTA, S.N., ARORA, Y.K., MATHUR, R.K., IQBALLUDDIN, PRASAD, B., SAHAI, T.N. and SHARMA S.B. (1997) The Precambrian Geology of the Aravalli Region, Southern Rajasthan and Northeastern Gujarat. Mem. Geol. Surv. India, v.123, 262p.
  • HANDKE M.J., TUCKER R.D. and ASHWAL, L.D. (1999) Neoproterozoic continental arc magmatism in west-central Madagascar. Geology, v.27, pp.351-354.
  • HARGRAVES, R.B., JOHNSON, D. and CHAN, C.Y. (1991) Distribution anisotropy: the cause of AMS in igneous rocks? Geophys. Res. Lett., v.18, pp.2193-2196.
  • HERON, A.M. (1953) Geology of Central Rajputana. Mem. Geol. Surv. India, v.79, 339p.
  • HROUDA, F. (1993) Theoretical models of magnetic anisotropy to strain relationship revised. Phys. Earth Planet. Inter., v.77, pp.237-249.
  • HROUDA, F. (1982) Magnetic anisotropy of rocks and its application in Geology and Geophysics. Geophys. Surv., v.5, pp.37-82.
  • HROUDA, F., SCHULMANN, K., SUPPES, M., ULLEMAYER, K., DE WALL, H. and WEBER, K. (1997)Quantitive relationship between lowfield AMS and phyllosilicate fabric: A review. Phy. Chem. Earth, v.22, pp.153-156.
  • JELINEKV. (1981). Characterization of the magnetic fabrics of rocks. Tectonophysics, v.79, pp.63-67.
  • LI, Z.X., LI, X.H., KINNY, P.D. and WANG, J. (1999) The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth Planet Sci. Lett., v.173, pp.171-181.
  • MAMTANI, M.A. and GREILING, R.O. (2005) Granite emplacement and its relation with regional deformation in the Aravalli Mountain Belt (India)-inferences from magnetic fabric. Jour. Struc. Geol., v.27, pp.2008-2029.
  • MARTIN-HERNANDEZ, F. and HIRT, A.M. (2003) The anisotropy of magnetic susceptibility in biotite, muscovite and chlorite single crystals. Tectonophysics, v.367, pp.13-28.
  • MEERT, J.G. (2003) A Synopsis of events related to the assembly of East Gondwana. Tectonophysics, v.362, pp.1-40.
  • PANDIT, M.K. and AMAR DEEP (1997) Petrogenesis of late Proterozoic Malani Suite of rocks in the northwestern fringe of Indian shield. In: Geology of South Asia-II, Geol. Surv. Sri Lanka, Special Paper, v.7, pp.85-91.
  • PANDIT, M.K. and DE WALL, H. (2009) Geochemistry and magnetic fabric analysis of the Mt. Abu batholith in the Aravalli-Delhi foreland - implications for Neoproterozoic tectonics in NW India. Int. Jour. Earth Sci. (in review).
  • PANDIT, M.K., CARTER, L.M., ASHWAL, L.D., TUCKER, R.D., TORSVIK, T.H., JAMTVEIT, B. and BHUSHAN, S.K. (2003)Age, petrogenesis and significance of 1 Ga granitoids and related rocks from the Sendra area, Aravalli Craton, NW India. Jour.Asian Earth Sci., v.22, pp.363-381.
  • PAREEK, H.S. (1984) Pre-Quaternary geology and mineral resources of northwestern Rajasthan. Mem. Geol. Surv. India, v.115, 99p.
  • PATERSON, S.R., FOWLER, T.K., SCHMIDT, K.L., YOSHINOBU, A.S, YUAN, E.S. and MILLER, R.B. (1998) Interpreting magmatic fabric patterns in plutons. Lithos, v.44, pp.53-82.
  • ROY,A.B. and SHARMA, K.K. (1999) Geology of the region around Sirohi town, western Rajasthan - store of Neoproterozoic evolution of the Trans-Aravalli crust. In: Paliwal, B.S. (Ed.), Geological evolution of western Rajasthan. Scientific Publishers (India), Jodhpur, pp.19-33.
  • SHARMA, K. K. (2004) The Neoproterozoic Malani Magmatism of the northwestern Indian shield: Implications for crust building processes. Jour. Earth Syst. Sci., v.113, pp.795-807.
  • SIEGESMUND, S. ULLEMEYER, K. and DAHMS, M. (1995) Control on magnetic rock fabrics by mica preferred orientation: a quantitative approach. Jour. Struct. Geol., v.17, pp.1601-1613.
  • STAUDIGEL, H., GEE, J., TAUXE, L. and VARGA, R.J. (1992) Shallow intrusive directions of sheeted dykes in the Troodos ophiolite: Anisotropy of magnetic susceptibity and structural data. Geology, v.20, pp.841-844.
  • TARLING, D.H. and HROUDA, F. (1993) The Magnetic Anisotropy of Rocks. Chapman & Hall, London, 217p.
  • TOBISCH, O.T., COLLERSON, K.D., BHATTACHARYA, T. and MUKHOPADHYAY, D. (1994) Structural relationship and Sr - Nd isotope systematics of polymetamorphic granitic gneisses and granitic rocks from central Rajasthan. India - implications for the evolution of Aravalli craton. Precambrian Res., v.65, pp.319-339.
  • TORSVIK,T.H., CARTER, L.M., ASHWAL, L.D., BHUSHAN, S.K., PANDIT, M.K. and JAMTVEIT, B. (2001) Rodinia refined or obscured: Palaeomagnetism of the Malani Igneous Suite (NW India). Precambrian Res., v.108, pp.319-333.
  • TUCKER, R.D., ASHWAL, L.D. and TORSVIK, T.H. (2001) U-Pb geochronology of Seychelles granitoids: a Neoproterozoic continental arc fragment. Earth Planet Sci. Lett., v.187, pp.27-38.
  • VAN LENTE, B., ASHWAL, L.D., PANDIT, M.K., BOWRING, S.A. and TORSVIK, T.H. (2009) Neoproterozoic hydrothermally altered basaltic rocks from Rajasthan, northwest India: implications for late Precambrian tectonic evolution of the Aravalli craton. Precambrian Res., v.170, pp.202-222.

Abstract Views: 171

PDF Views: 0




  • A Record of Ductile Syn-Intrusional Fabrics to Post Solidification Cataclasis: Magnetic Fabric Analysis of Neoproterozoic Mirpur and Mt. Abu Granitoids, NW India

Abstract Views: 171  |  PDF Views: 0

Authors

Helga De Wall
Geozentrum Nordbayern, Universitat Erlangen-Nuernberg, Schlossgarten 5, D-91054 Erlangen, Germany
Stefan Schoebel
Geozentrum Nordbayern, Universitat Erlangen-Nuernberg, Schlossgarten 5, D-91054 Erlangen, Germany
Manoj K. Pandit
Department of Geology, University of Rajasthan, Jaipur - 302004, India
Kamal K. Sharma
Department of Geology, Government Postgraduate College, Sirohi - 307001, India
J. Just
Geozentrum Nordbayern, Universitat Erlangen-Nuernberg, Schlossgarten 5, D-91054 Erlangen, Germany

Abstract


The Mirpur granite body represents a relatively small (10 km2) pluton intruded along the northern margin of the adjacent Mt. Abu batholith (∼125 km2) in NW India. It is a visibly undeformed alkali feldspar rich pink granite; in contrast, the Mt. Abu is a composite granitoid body and variably deformed. Both are intruded by rhyolitic dykes and the terminal magmatic events in both the cases are mafic dykes. The AMS (Anisotropy of Magnetic Susceptibility) data identify the Mt. Abu with SE-dipping foliations and subvertical lineations as a single structural domain while the Mirpur granite body shows two domains characterized by predominantly E - W trend of magnetic foliation in the eastern part (domain I) and N - S orientations in the western part (domain II). The domain I shows magmatic fabrics, typical for the peraluminous granites of Malani Igneous Suite (MIS). Change in fabric orientation in the domain II has resulted from cataclasis wherein the samples show destruction of the original E - W fabric and complete transposition by N - S trends. The foliations in the Mt. Abu granites have been related to SE orientation of maximum horizontal stress. The same maximum stress direction can be inferred from dyke orientation in the Mirpur granite, which is interpreted as continuation of the tectonic imprint in this region during emplacement of both the granites. Age of the cataclastic overprint with a predominant N - S orientation is not yet constrained but corresponds with the trend of the nearby Sindreth basin within the Malani Igneous Suite. The Neoproterozoic tectonic scenario for the region has been interpreted in terms of an ongoing crustal convergence and granitic magma emplacement against the back stop offered by the rigid Delhi Fold Belt.

Keywords


Anisotropy of Magnetic Susceptibility, Cataclasis, Mirpur Granite, Mt. Abu, NW India.

References