Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Insights into Rhizospheric Bacterial Abundance of Bruguiera gymnorhiza (l.) LAM. from the Indian Sunderbans


Affiliations
1 Department of Botany, Lady Brabourne College, Kolkata-700017, West Bengal, India
2 Department of Biotechnology, University of Calcutta, Kolkata-700019, West Bengal, India
3 Department of Biotechnology, St. Xavier’s College, Kolkata-700016, West Bengal, India
     

   Subscribe/Renew Journal


The sturdiness of mangrove plants, such as Bruguiera gymnorhiza (L.) Lam, has been related to their inherent physiological resistance and beneficial interactions with associated and specific microbial communities. Development in metagenomics provides a more complete picture of rhizosphere microbiome. In this work we analysed bacterial community of root rhizosphere of B. gymnorhiza using 16s rRNA metagenome next generation sequencing (Oxford Nanopore minion platfrom) and found Candidatus, Ectothiorhodospira, Holophaga, Nitrospira, Pelagibius, Sulfitobacter, Thioalkalivibrio, Vicinamibacter, Woeseia to be most abundant genera, which provides a new insight into the functional and microbial diversity of the rhizospheric assemblage of the plant under study.


Keywords

Bruguiera gymnorhiza, Metagenomics, Microbiome, Oxford Nanopore, 16s rRNA
Subscription Login to verify subscription
User
Notifications
Font Size


  • Bulgarelli, D., Rott, M., Schlaeppi, K., Van Themaat, E. V. L., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., Peplies, J., Gloeckner, F. O., Amann, R., Eickhorst, T. and Schulze-Lefert, P. 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature., 488: 91-95.
  • Calvaruso, C., Mareschal, L., Turpault, L. M. M-P. and Leclerc, E. 2009. Rapid clay weathering in the rhizosphere of Norway spruce and oak in an acid forest ecosystem. Soil. Sci. Soc. Am. J., 73(1): 331-338.
  • DeAngelis, K. M., Brodie, E. L., DeSantis, T. Z., Andersen, G. L., Lindow, S. E. and Firestone, M. K. 2008. Selective progressive response of soil microbial community to wild oat roots. ISME J., 3(2): 168-178.
  • Dumbrell, A. J., Nelson, M., Helgason, T., Dytham, C. and Fitter, A. H. 2010. Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J., 4(3): 337-345. https://store.nanoporetech.com/media/wysiwyg/Example_Direct_cDNA_Sequencing_ protocol.pdf.
  • Jager, J. and Looman, C. 1995. Data collection. In: R. H. G. Jongman, C. J. F. T. Braak and O. F. R. V. Tongreren (eds.), Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge, pp. 10-28.
  • Knief, C., Delmotte, N., Chaffron, S., Stark, M., Innerebner, G., Wassmann, R., Mering C. V. and Vorholt, J. A. 2012. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J., 6(7): 1378-1390.
  • Mendes, R., Garbeva, P. and Raaijmakers, J. M. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol., Rev., 37(5): 634-663.
  • Philippot, L., Raaijmakers, J. M., Lemanceau, P. and van der Putten, W. H. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol., 11(11): 789-799.
  • Rasche, F., Hödl, V., Poll, C., Kandeler, E., Gerzabek, M. H., Van Elsas, J. D. and Sessitsch, A. 2006. Rhizosphere bacteria affected by transgenic potatoes with antibacterial activities compared with the effects of soil, wild-type potatoes, vegetation stage and pathogen exposure. FEMS Microbiol. Ecol., 56(2): 219-235.
  • Robin, A., Mougel, C., Siblot, S., Vansuyt, G., Mazurier, S. and Lemanceau, P. 2006. Effect of ferritin over-expression in tobacco on the structure of bacterial and pseudomonas communities associated with the roots. FEMS Microbiol. Ecol., 58(3): 492-502.
  • Uroz, S., Buee, M., Murat, C., Frey-Klett, P. and Martin, F. 2010. Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ. Microbiol. Rep., 2(2): 281-288.
  • Xu, Y., Wang, G., Jin, J., Liu, J., Zhang, Q. and Liu, X. 2009. Bacterial communities in soybean rhizosphere in response to soil type, soybean genotype, and their growth stage. Soil Biol. Biochem., 41(5): 919-925.

Abstract Views: 6

PDF Views: 1




  • Insights into Rhizospheric Bacterial Abundance of Bruguiera gymnorhiza (l.) LAM. from the Indian Sunderbans

Abstract Views: 6  |  PDF Views: 1

Authors

Rajdeep Das
Department of Botany, Lady Brabourne College, Kolkata-700017, West Bengal, India
Bidisha Mallick
Department of Botany, Lady Brabourne College, Kolkata-700017, West Bengal, India
Debleena Roy
Department of Botany, Lady Brabourne College, Kolkata-700017, West Bengal, India
Suchita Sinha
Department of Botany, Lady Brabourne College, Kolkata-700017, West Bengal, India
Rajat Banerjee
Department of Biotechnology, University of Calcutta, Kolkata-700019, West Bengal, India
Sayak Ganguli
Department of Biotechnology, St. Xavier’s College, Kolkata-700016, West Bengal, India

Abstract


The sturdiness of mangrove plants, such as Bruguiera gymnorhiza (L.) Lam, has been related to their inherent physiological resistance and beneficial interactions with associated and specific microbial communities. Development in metagenomics provides a more complete picture of rhizosphere microbiome. In this work we analysed bacterial community of root rhizosphere of B. gymnorhiza using 16s rRNA metagenome next generation sequencing (Oxford Nanopore minion platfrom) and found Candidatus, Ectothiorhodospira, Holophaga, Nitrospira, Pelagibius, Sulfitobacter, Thioalkalivibrio, Vicinamibacter, Woeseia to be most abundant genera, which provides a new insight into the functional and microbial diversity of the rhizospheric assemblage of the plant under study.


Keywords


Bruguiera gymnorhiza, Metagenomics, Microbiome, Oxford Nanopore, 16s rRNA

References