Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Light, Feeding and Melatonin: An Interplay in the Appetite Regulation in the Gut of Zebrafish (Danio rerio)


Affiliations
1 Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development (Department of Biotechnology, Government of India), Takyelpat, Imphal - 795001, Manipur, India
2 Biological Rhythm Laboratory, Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, Asansol - 713340, West Bengal, India
     

   Subscribe/Renew Journal


Every physiological function, including feeding and energy homeostasis is vital for animal sustainability. Melatonin is the neuroendocrine transducer of circadian photoperiod and is able to synchronize these physiological functions. The present study demonstrates the daily variation in gut melatonin and mRNA expression of appetite regulating hormone [leptin, nesfatin-1, orexin, ghrelin and ghrelin o-acetyltransferase (goat)] in relation to Gastrointestinal Somatic Index (Ga-SI) in the gut of zebrafish (Danio rerio), under various lighting schedule- LD (12L:12D), LL (continuous Light), and DD (continuous dark)- and scheduled feeding. The result exhibited a change in the peak level of the Ga-SI according to different photic conditions. But no change in Ga-SI was found after melatonin treatment under normal photoperiod (LD). Peak expression of anorexigenic peptide hormone genes (leptin and nesfatin1) were found with the highest level of Ga-SI but the highestlevel mRNA expression of orexigenic peptide gene hcrt was at the time of highest feeding and ghrelin with goat were after 6 hr of highest Ga-SI. These patterns changed in continuous photic conditions. This result indicates light as the critical dominant factor and, may be through melatonin, it can modulate the components of appetite regulation in this peripheral organ. This finding supports the hypothesis about the “light pollution” and its silent desynchronization of feeding behavior and related physiological functions, thereby the biodiversity and the sustainability of organisms.

Keywords

Anorexigenic, Clock, Gut, Light, Melatonin, Orexigenic
Subscription Login to verify subscription
User
Notifications
Font Size


  • Valassi E, Scacchi M, Cavagnini F. Neuroendocrine control of food intake. Nutr Metab Cardiovasc Dis. 2008; 18(2):15868. https://doi.org/10.1016/j.numecd.2007.06.004. PMid:18061414.
  • Lin X, Volkoff H, Narnaware Y, Bernier NJ, Peyon P, Peter RE. Brain regulation of feeding behavior and food intake in fish. Comp Biochem Physiol A Mol Integr Physiol. 2000; 126(4):415-34. https://doi.org/10.1016/S10956433(00)00230-0. PMid:10989336.
  • Reiter RJ. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev. 1991; 12(2):151-80. https://doi.org/10.1210/edrv-12-2-151. PMid:1649044.
  • Falcon J, Besseau L, Sauzet S, Boeuf G. Melatonin effects on the hypothalamo-pituitary axis in fish. Trends Endocrinol Metab. 2007; 18(2):81-8. https://doi.org/10.1016/j.tem.2007.01.002. PMid:17267239.
  • Azpeleta C, Martinez-Alvarez RM, Delgado MJ, Isorna E, De Pedro N. Melatonin reduces locomotor activity and circulating cortisol in goldfish. Horm Behav. 2010; 57(3):323-29. https://doi.org/10.1016/j.yhbeh.2010.01.001. PMid:20079741.
  • Chattoraj A, Liu T, Zhang LS, Huang Z, Borjigin J. Melatonin formation in mammals: In vivo perspectives. Rev Endocr Metab Disord. 2009; 10(4):237-43. https://doi.org/10.1007/s11154-009-9125-5. PMid:20024626, PMCid:PMC2843929.
  • Cazamea-Catalan D, Besseau L, Falcon J, Magnanou E. The timing of Timezyme diversification in vertebrates. PLoS One 2014; 9(12):e112380. https://doi.org/10.1371/journal.pone.0112380. PMid:25486407, PMCid:PMC4259306.
  • Klein DC. Arylalkylamine N-acetyltransferase: “the Timezyme”. J Biol Chem. 2007; 282(7):4233-37. https://doi.org/10.1074/jbc.R600036200. PMid:17164235.
  • Bubenik GA, Pang SF. Melatonin levels in the gastrointestinal tissues of fish, amphibians, and a reptile. Gen Comp Endocrinol. 1997; 106(3):415-19. https://doi.org/10.1006/gcen.1997.6889. PMid:9204376.
  • Velarde E, Cerda-Reverter JM, Alonso-Gomez AL, Sanchez E, Isorna E, Delgado MJ. Melatonin-synthesizing enzymes in pineal, retina, liver, and gut of the goldfish (Carassius): mRNA expression pattern and regulation of daily rhythms by lighting conditions. Chronobiol Int. 2010; 27(6):11781201. https://doi.org/10.3109/07420528.2010.496911. PMid:20653449.
  • Choi JY, Kim NN, Choi YJ, Park MS, Choi CY. Differential daily rhythms of melatonin in the pineal gland and gut of goldfish Carassius auratus in response to light. Biol Rhythm Res 2016; 47(1):145-61. https://doi.org/10.1080/09291016.2015.1094964.
  • Fernández-Durán B, Ruibal C, Polakof S, Ceinos RM, Soengas JL, Míguez JM. Evidence for arylalkylamine N-acetyltransferase (AANAT2) expression in rainbow trout peripheral tissues with emphasis in the gastrointestinal tract. Gen Comp Endocrinol. 2007; 152(2-3):289-94. https://doi.org/10.1016/j.ygcen.2006.12.008. PMid:17292900.
  • Mukherjee S, Maitra SK. Effects of starvation, re-feeding and timing of food supply on daily rhythm features of gut melatonin in carp (Catla catla). Chronobiol Int. 2015; 32(9):1264-77. https://doi.org/10.3109/07420528.2015.108 7020. PMid:26513010.
  • Munoz-Perez JL, Lopez-Patino MA, Alvarez-Otero R, Gesto M, Soengas JL, Miguez JM. Characterization of melatonin synthesis in the gastrointestinal tract of rainbow trout (Oncorhynchus mykiss): distribution, relation with serotonin, daily rhythms and photoperiod regulation. J Comp Physiol B 2016; 186(4):471-84. https://doi.org/10.1007/s00360-016-0966-4. PMid:26873742.
  • Piccinetti CC, Migliarini B, Olivotto I, Coletti G, Amici A, Carnevali O. Appetite regulation: the central role of melatonin in Danio rerio. HormBehav. 2010; 58(5):780-85. https://doi.org/10.1016/j.yhbeh.2010.07.013. PMid:20692259.
  • Piccinetti CC, Migliarini B, Olivotto I, Simoniello MP, Giorgini E, Carnevali O. Melatonin and peripheral circuitries: insights on appetite and metabolism in Danio rerio. Zebrafish. 2013; 10(3):275-82. https://doi.org/10.1089/zeb.2012.0844. PMid:23682835 PMCid:PMC3760084.
  • Lepage O, Larson ET, Mayer I, Winberg S. Tryptophan affects both gastrointestinal melatonin production and interrenal activity in stressed and nonstressed rainbow trout. J Pineal Res. 2005; 38(4):264-71. https://doi.org/10.1111/j.1600-079X.2004.00201.x. PMid:15813903.
  • Bubenik GA. Gastrointestinal melatonin: localization, function, and clinical relevance. Dig Dis Sci. 2002; 47(10):2336-48. https://doi.org/10.1023/A:1020107915919. PMid:12395907.
  • Volkoff H. The neuroendocrine regulation of food intake in fish: A review of current knowledge. Front Neurosci. 2016; 10:540. https://doi.org/10.3389/fnins.2016.00540. PMid:27965528 PMCid:PMC5126056.
  • Gorissen M, Flik G. Leptin in teleostean fish, towards the origins of leptin physiology. J Chem Neuroanat. 2014; 61-62:200-206. https://doi.org/10.1016/j.jchemneu.2014.06.005. PMid:24977940.
  • Birsoy K, Festuccia WT, Laplante M. A comparative perspective on lipid storage in animals. J Cell Sci. 2013; 126(pt 7): 1541-52. https://doi.org/10.1242/jcs.104992. PMid:23658371.
  • Volkoff H, Eykelbosh AJ, Peter RE. Role of leptin in the control of feeding of goldfish Carassius auratus: interactions with cholecystokinin, neuropeptide Y and orexin A, and modulation by fasting. Brain Res. 2003; 972(1-2):90109. https://doi.org/10.1016/S0006-8993(03)02507-1. PMid:12711082.
  • Tian J, He G, Mai K, Liu C. Effects of postprandial starvation on mRNA expression of endocrine-, amino acid and peptide transporter-, and metabolic enzyme-related genes in zebrafish (Danio rerio). Fish Physiol Biochem. 2015; 41(3):773-87. https://doi.org/10.1007/s10695-0150045-x. PMid:25805459.
  • Schwartz MW, Seeley RJ, Woods SC, Weigle DS, Campfield LA, Burn P, Baskin DG. Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 1997; 46(12):2119-23. https://doi.org/10.2337/diabetes.46.12.2119. PMid:9392508.
  • Seeley RJ, Yagaloff KA, Fisher SL, Burn P, Thiele TE, van Dijk G, Baskin DG, Schwartz MW. Melanocortin receptors in leptin effects. Nature 1997; 390(6658):349. https://doi.org/10.1038/37016. PMid:9389472.
  • Ayada C, Toru U Korkut Y. Nesfatin-1 and its effects on different systems. Hippokratia 2015; 19(1):4-10.PMid: 26435639 PMCid: PMC4574585.
  • Hatef A, Shajan S, Unniappan S. Nutrient status modulates the expression of nesfatin-1 encoding nucleobindin 2A and 2B mRNAs in zebrafish gut, liver and brain. Gen Comp Endocrinol. 2015a; 215:51-60. https://doi.org/10.1016/j.ygcen.2014.09.009. PMid:25260251.
  • Panula P. Hypocretin/orexin in fish physiology with emphasis on zebrafish. Acta Physiol (Oxf). 2010; 198(3):381-86. https://doi.org/10.1111/j.1748-1716.2009.02038.x. PMid:19723028.
  • Yokobori E, Kojima K, Azuma M, Kang KS, Maejima S, Uchiyama M, Matsuda K. Stimulatory effect of intracerebroventricular administration of orexin A on food intake in the zebrafish, Danio rerio Peptides. 2011; 32(7):1357-62. https://doi.org/10.1016/j.peptides.2011.05.010. PMid:21616109.
  • Volkoff H, Bjorklund JM, Peter RE. Stimulation of feeding behavior and food consumption in the goldfish, Carassius auratus, by orexin-A and orexin-B. Brain Res. 1999; 846(2):204-09. https://doi.org/10.1016/S00068993(99)02052-1. PMid: 10556637.
  • Sundarrajan L, Unniappan S. Small interfering RNA mediated knockdown of irisin suppresses food intake and modulates appetite regulatory peptides in zebrafish. Gen Comp Endocrinol. 2017; 252:200-08. https://doi.org/10.1016/j.ygcen.2017.06.027. PMid:28666854.
  • Facciolo RM, Crudo M, Zizza M, Giusi G, Canonaco M. Feeding behaviors and ORXR-beta-GABA A R subunit interaction in Carassius auratus. Neurotoxicol Teratol. 2011; 33(6):641-50. https://doi.org/10.1016/j.ntt.2011.09.008. PMid:22001787.
  • Volkoff H, Estevan Sabioni R, Coutinho LL, Cyrino JE. Appetite regulating factors in pacu (Piaractus mesopotamicus): Tissue distribution and effects of food quantity and quality on gene expression. Comp Biochem Physiol A Mol Integr Physiol. 2017; 203:241-54. https://doi.org/10.1016/j.cbpa.2016.09.022. PMid:27717774.
  • Yan A, Zhang L, Tang Z, Zhang Y, Qin C, Li B, Li W, Lin H. Orange-spotted grouper (Epinephelus coioides) orexin: Molecular cloning, tissue expression, ontogeny, daily rhythm and regulation of NPY gene expression. Peptides. 2011; 32(7):1363-70. https://doi.org/10.1016/j.peptides.2011.05.004. PMid: 21600944.
  • Kojima M, Kangawa K. Ghrelin: structure and function. Physiol Rev. 2005; 85(2):495-522. https://doi.org/10.1152/ physrev.00012.2004. PMid: 15788704.
  • Hatef A, Yufa R, Unniappan S. Ghrelin O-Acyl Transferase in zebrafish is an eolutionarily conserved peptide upregulated during calorie restriction. Zebrafish 2015b; 12(5): 327-38. https://doi.org/10.1089/zeb.2014.1062. PMid: 26226634 PMCid: PMC4593878.
  • Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999; 402(6762): 656-60. https://doi.org/10.1038/45230. PMid: 10604470.
  • Unniappan S, Peter RE. Structure, distribution and physiological functions of ghrelin in fish. Comp Biochem Physiol. A. Mol Integr Physiol. 2005; 140(4): 396-408. https://doi.org/10.1016/j.cbpb.2005.02.011. PMid: 15936698.
  • Gutierrez JA, Solenberg PJ, Perkins DR, Willency JA, Knierman MD, Jin Z, Witcher DR, Luo S, Onyia JE, Hale JE. Ghrelin octanoylation mediated by an orphan lipid transferase. Proc Natl Acad Sci USA. 2008; 105(17):632025. https://doi.org/10.1073/pnas.0800708105. PMid: 18443287 PMCid: PMC2359796.
  • Yang J, Brown MS, Liang G, Grishin NV, Goldstein JL. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell 2008; 132(3): 387-96. https://doi.org/10.1016/j.cell.2008.01.017. PMid: 18267071.
  • Sakata I, Yang J, Lee CE, Osborne-Lawrence S, Rovinsky SA, Elmquist JK, Zigman JM. Colocalization of ghrelin O-acyltransferase and ghrelin in gastric mucosal cells. Am J Physiol Endocrinol Metab. 2009; 297(1):E134-41. https:// doi.org/10.1152/ajpendo.90859.2008. PMid: 19401456 PMCid: PMC2711663.
  • Xu P, Wang J, Hong F, Wang S, Jin X, Xue T, Jia L, Zhai Y. Melatonin prevents obesity through modulation of gut microbiota in mice. J Pineal Res 2017; $V 62(4), n/a-n/a.https://doi.org/10.1111/jpi.12399. PMID: 28199741.
  • Montalbano G, Mania M, Abbate F, Navarra M, Guerrera MC, Laura R, Vega JA, Levanti M, Germana A. Melatonin treatment suppresses appetite genes and improves adipose tissue plasticity in diet-induced obese zebrafish. Endocrine. 2018; 62(2):381-393. https://doi.org/10.1007/s12020-0181653-x. PMid: 29926348.
  • Lee E, Kim M. Light and life at night as circadian rhythm disruptors. Chronobiol Med. 2019; 1(3): 95-102. https:// doi.org/10.33069/cim.2019.0016.
  • Cleator J, Judd P, James M, Abbott J, Sutton CJ, Wilding JPH. Characteristics and perspectives of night-eating behavior in a severely obese population. Clin Obes. 2014; 4(1): 30-38. https://doi.org/10.1111/cob.12037. PMid: 25425130.
  • Khan ZA, Labala RK, Yumnamcha T, Devi SD, Mondal G, Sanjita Devi H, Rajiv C, Bharali R, Chattoraj A. Artificial Light at Night (ALAN), an alarm to ovarian physiology: A study of possible chronodisruption on zebrafish (Danio rerio). Sci Total Environ. 2018; 628-29:1407-21. https://doi.org/10.1016/j.scitotenv.2018.02.101. PMid: 30045561.
  • Reed B, Jennings M. Guidance on the Housing and Care of Zebrafish, Danio Rerio: Research Animals Department, Science Group, RSPCA. 2011. http://www.rspca.org.uk/ home.
  • Westerfield M. The zebrafish book: A guide for the laboratory use of zebrafish (Danio rerio). Eugene, OR: University of Oregon Press. 2000; 4th ed. https://zfin.org/ zf_info/zfbook/zfbk.html.
  • Khan ZA, Yumnamcha T, Rajiv C, Devi HS, Mondal G, Devi Sh D, Bharali R, Chattoraj A. Melatonin biosynthesizing enzyme genes and clock genes in ovary and whole brain of zebrafish (Danio rerio): Differential expression and a possible interplay. Gen Comp Endocrinol. 2016; 233:1631. https://doi.org/10.1016/j.ygcen.2016.05.014. PMid: 27179881.
  • Portaluppi F, Smolensky MH, Touitou Y. Ethics and methods for biological rhythm research on animals and human beings. Chronobiol Int. 2010; 27(9-10):1911-29. https://doi.org/10.3109/07420528.2010.516381. PMid: 20969531.
  • Lopez-Olmeda JF, Montoya A, Oliveira C, Sanchez-Vazquez FJ. Synchronization to light and restricted-feeding schedules of behavioral and humoral daily rhythms in gilthead sea bream (Sparus aurata). Chronobiol Int. 2009; 26(7):13891408. https://doi.org/10.3109/07420520903421922. PMid: 19916838.
  • Nisembaum LG, Velarde E, Tinoco AB, Azpeleta C, de Pedro N, Alonso-Gomez AL, Delgado MJ, Isorna E. Lightdark cycle and feeding time differentially entrains the gut molecular clock of the goldfish (Carassius auratus). Chronobiol Int. 2012; 29(6):665-73. https://doi.org/10.310 9/07420528.2012.686947. PMid: 22734567.
  • Amaral IP, Johnston IA. Circadian expression of clock and putative clock-controlled genes in skeletal muscle of the zebrafish. Am J Physiol Regul Integr Comp Physiol. 2012; 302(1):R193-206. https://doi.org/10.1152/ ajpregu.00367.2011. PMid: 22031781.
  • Brugman S. The zebrafish as a model to study intestinal inflammation. Dev Comp Immunol. 2016; 64: 82-92. https://doi.org/10.1016/j.dci.2016.02.020. PMid: 26902932.
  • Yumnamcha T, Khan ZA, Rajiv C, Devi SD, Mondal G, Sanjita Devi H, Bharali R, Chattoraj A. Interaction of melatonin and gonadotropin-inhibitory hormone on the zebrafish brain-pituitary-reproductive axis. 2017; 84(5): 389-400. https://doi.org/10.1002/mrd.22795. PMid: 28295807.
  • Chattoraj A, Bhattacharyya S, Basu D, Bhattacharya S, Bhattacharya S, Maitra SK. Melatonin accelerates maturation inducing hormone (MIH): Induced oocyte maturation in carps. Gen Comp Endocrinol. 2005; 140(3):145-55. https:// doi.org/10.1016/j.ygcen.2004.10.013. PMid: 15639142.
  • Falcinelli S, Rodiles A, Unniappan S, Picchietti S, Gioacchini G, Merrifield DL, Carnevali O. Probiotic treatment reduces appetite and glucose level in the zebrafish model. Sci Rep. 2016; 6: 18061. https://doi.org/10.1038/srep18061. PMid: 26727958 PMCid: PMC4700460.
  • Novak CM, Jiang X, Wang C, Teske JA, Kotz CM, Levine JA. Caloric restriction and physical activity in zebrafish (Danio rerio). Neurosci Lett. 2005; 383(1-2):99-104. https://doi.org/10.1016/j.neulet.2005.03.048. PMid: 15936519.
  • Jeronimo R, Moraes MN, de Assis LVM, Ramos BC, Rocha T, Castrucci AML. Thermal stress in Danio rerio: A link between temperature, light, thermo-TRP channels, and clock genes. J Therm Biol. 2017; 68(Pt A):128-38. https://doi.org/10.1016/j.jtherbio.2017.02.009. PMid: 28689714.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25(4):402-8. https://doi.org/10.1006/meth.2001.1262. PMid: 11846609.
  • Tang R, Dodd A, Lai D, McNabb WC, Love DR. Validation of zebrafish (Danio rerio) reference genes for quantitative real-time RT-PCR normalization. Acta Biochim Biophys Sin(Shanghai). 2007; 39(5):384-90. https://doi.org/10.1111/ j.1745-7270.2007.00283.x. PMid: 17492136 PMCid: PMC7110012.
  • Biswas AK, Takeuchi T. Effects of photoperiod and feeding interval on food intake and growth rate of Nile tilapia Oreochromis niloticus L. Fisheries Sci. 2003; 69(5):1010-16. https://doi.org/10.1046/j.1444-2906.2003.00720.x.
  • Pandi-Perumal SR, Srinivasan V, Maestroni GJ, Cardinali DP, Poeggeler B, Hardeland R. Melatonin: Nature’s most versatile biological signal? FEBS J. 2006; 273(13):2813-38. https://doi.org/10.1111/j.1742-4658.2006.05322.x. PMid: 16817850.
  • López-Olmeda JF, Tartaglione EV, de la Iglesia HO, SánchezVázquez FJ. Feeding entrainment of food-anticipatory activity and PER1 expression in the brain and liver of zebrafish under different lighting and feeding conditions. Chronobiol Int. 2010; 27(7):1380-1400. https://doi.org/10.3109/07420528.2010.501926. PMid: 20795882.
  • Vera LM, Negrini P, Zagatti C, Frigato E, Sanchez-Vazquez FJ, Bertolucci C. Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata). Chronobiol Int. 2013; 30(5):649-61. https://doi.org/10.3109/07420528.2013.775143. PMid: 23688119.
  • Petit G, Beauchaud M, Attia J, Buisson B. Food intake and growth of largemouth bass (Micropterus salmoides) held under alternated light/dark cycle (12L:12D) or exposed to continuous light. Aquaculture 2003; 228(1-4):397-401. https://doi.org/10.1016/S0044-8486(03)00315-6.
  • Webster JR, Corson ID, Littlejohn RP, Martin SK, Suttie JM. The rôles of photoperiod and nutrition in the seasonal increases in growth and insulin-like growth factor-1 secretion in male red deer. Animal Science. 2001; 73(2):30511. https://doi.org/10.1017/S1357729800058288.
  • Isorna E, de Pedro N, Valenciano AI, Alonso-Gómez ÁL, Delgado MJ. Interplay between the endocrine and circadian systems in fishes. J Endocrinol. 2017; 232(3):R141-59. https://doi.org/10.1530/JOE-16-0330. PMid: 27999088.
  • Bubenik GA, Pang SF. The role of serotonin and melatonin in gastrointestinal physiology: ontogeny, regulation of food intake, and mutual serotonin-melatonin feedback. J Pineal Res. 1994; 16(2):91-99. https://doi.org/10.1111/j.1600079X.1994.tb00088.x. PMid: 8014829.
  • Pinillos ML, De Pedro N, Alonso-Gómez AL, AlonsoBedate M, Delgado MJ. Food intake inhibition by melatonin in goldfish (Carassius auratus). Physiol Behav. 2001; 72(5):629-34. https://doi.org/10.1016/S00319384(00)00399-1. PMid: 11336993.
  • Tinoco AB, Nisembaum LG, de Pedro N, Delgado MJ, Isorna E. Leptin expression is rhythmic in brain and liver of goldfish (Carassius auratus). Role of feeding time. Gen Comp Endocrinol. 2014; 204:239-47. https://doi.org/10.1016/j.ygcen.2014.06.006. PMid: 24932715.
  • Sundarrajan L, Blanco AM, Bertucci JI, Ramesh N, Canosa LF, Unniappan S. Nesfatin-1-like peptide ecoded in nucleobindin-1 in goldfish is a novel anorexigen modulated by sex steroids, macronutrients and daily rhythm. Sci Rep. 2016; 6:28377. https://doi.org/10.1038/srep28377. PMid: 27329836 PMCid: PMC4916606.
  • Hoskins LJ, Volkoff H. The comparative endocrinology of feeding in fish: insights and challenges. Gen Comp Endocrinol. 2012; 176(3):327-35. https://doi.org/10.1016/j.ygcen.2011.12.025 PMid: 22226758.
  • Wall A, Volkoff H. Effects of fasting and feeding on the brain mRNA expressions of orexin, tyrosine hydroxylase (TH), PYY and CCK in the Mexican blind cavefish (Astyanax fasciatus mexicanus). Gen Comp Endocrinol. 2013; 183:44-52. https://doi.org/10.1016/j.ygcen.2012.12.011. PMid: 23305930.
  • Nisembaum LG, de Pedro N, Delgado MJ, Sanchez-Bretano A, Isorna E. Orexin as an input of circadian system in goldfish: Effects on clock gene expression and locomotor activity rhythms. Peptides. 2014; 52:29-37. https://doi.org/10.1016/j.peptides.2013.11.014. PMid: 24284416.
  • Sanchez-Bretano A, Blanco AM, Unniappan S, Kah O, Gueguen MM, Bertucci JI, Alonso-Gomez AL, Valenciano AI, Isorna E, Delgado MJ. In situ localization and rhythmic expression of ghrelin and ghs-r1 ghrelin receptor in the brain and gastrointestinal tract of goldfish (Carassius auratus). PLoS One. 2015; 10(10):e0141043. https://doi.org/10.1371/journal.pone.0141043. PMid: 26506093 PMCid: PMC4624692.
  • Bano-Otalora B, Madrid JA Rol MA. Melatonin alleviates circadian system disruption induced by chronic shifts of the light-dark cycle in Octodon degus. J Pineal Res. 2020; 68(1):e12619. https://doi.org/10.1111/jpi.12619. PMid: 31677295 PMCid: PMC6916290.
  • Vriend J, Reiter RJ. Melatonin feedback on clock genes: a theory involving the proteasome. J Pineal Res. 2015; 58(1):1-11. https://doi.org/10.1111/jpi.12189. PMid: 25369242.
  • Page AJ, Christie S, Symonds E, Li H. Circadian regulation of appetite and time restricted feeding. Physiol Behav. 2020; 220:112873. https://doi.org/10.1016/j.physbeh.2020.112873. PMid: 32194073.

Abstract Views: 195

PDF Views: 0




  • Light, Feeding and Melatonin: An Interplay in the Appetite Regulation in the Gut of Zebrafish (Danio rerio)

Abstract Views: 195  |  PDF Views: 0

Authors

Gopinath Mondal
Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development (Department of Biotechnology, Government of India), Takyelpat, Imphal - 795001, Manipur, India
Sijagurumayum Dharmajyoti Devi
Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development (Department of Biotechnology, Government of India), Takyelpat, Imphal - 795001, Manipur, India
Zeeshan Ahmad Khan
Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development (Department of Biotechnology, Government of India), Takyelpat, Imphal - 795001, Manipur, India
Rajendra Kumar Labala
Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development (Department of Biotechnology, Government of India), Takyelpat, Imphal - 795001, Manipur, India
Asamanja Chattoraj
Biological Rhythm Laboratory, Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, Asansol - 713340, West Bengal, India

Abstract


Every physiological function, including feeding and energy homeostasis is vital for animal sustainability. Melatonin is the neuroendocrine transducer of circadian photoperiod and is able to synchronize these physiological functions. The present study demonstrates the daily variation in gut melatonin and mRNA expression of appetite regulating hormone [leptin, nesfatin-1, orexin, ghrelin and ghrelin o-acetyltransferase (goat)] in relation to Gastrointestinal Somatic Index (Ga-SI) in the gut of zebrafish (Danio rerio), under various lighting schedule- LD (12L:12D), LL (continuous Light), and DD (continuous dark)- and scheduled feeding. The result exhibited a change in the peak level of the Ga-SI according to different photic conditions. But no change in Ga-SI was found after melatonin treatment under normal photoperiod (LD). Peak expression of anorexigenic peptide hormone genes (leptin and nesfatin1) were found with the highest level of Ga-SI but the highestlevel mRNA expression of orexigenic peptide gene hcrt was at the time of highest feeding and ghrelin with goat were after 6 hr of highest Ga-SI. These patterns changed in continuous photic conditions. This result indicates light as the critical dominant factor and, may be through melatonin, it can modulate the components of appetite regulation in this peripheral organ. This finding supports the hypothesis about the “light pollution” and its silent desynchronization of feeding behavior and related physiological functions, thereby the biodiversity and the sustainability of organisms.

Keywords


Anorexigenic, Clock, Gut, Light, Melatonin, Orexigenic

References





DOI: https://doi.org/10.18311/jer%2F2019%2F26748