Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Quality assessment of sprouted mung beans at various storage temperatures


Affiliations
  • University of Delhi, Department of Home Science Aditi Mahavidyalya, Bawana, India
  • Lady Irwin College, University of Delhi, Department of Food and Nutrition, New delhi, India
     

   Subscribe/Renew Journal


The present study was conducted with an objective to assess the quality of sprouted mung beans stored at different temperatures. Mung beans sprouts were processed at laboratory in controlled conditions, packed in LDPE pouches and were stored at summer room temperature (SRT) (30-32°C), winter room temperature (WRT) (15-18°C) and refrigeration temperature (RT) (7°C). Shelf life studies were conducted periodically for physical, chemical and microbiological parameters for 5 days at their respective storage temperatures. During shelf life studies, several changes were observed in sprouted samples of mung beans. There was a significant (p<0.05) increase in shoot length of sprouted mung beans samples stored at SRT followed by WRT and RT. Decrease in moisture content was significantly (p<0.05) more at RT followed by WRT and SRT. Vitamin - C content increased significantly (p<0.05) up to 1st day of storage at SRT and WRT, with decrease thereafter. Whereas at RT significant (p<0.05) increase was observed till 2nd day of storage followed by decrease afterwards. Vitamin - C content retained better at RT (16.6%) followed by WRT (6.3 %), while at SRT loss of 6.9% was observed. Acidity increased significantly at all three storage temperatures followed by subsequent decrease. Microbial count in terms of total plate count, yeast and mold count was comparatively higher at SRT followed by WRT and RT, though within acceptable range, whereas Coliform count was not detected at any stage. Thus it can be concluded that at RT (7°C) within two days of storage, optimal retention of physicochemical and microbiological qualities are achieved.

Keywords

Mung beans, sprouts, shelf life, storage, temperatures, quality
User
Notifications

Abstract Views: 21

PDF Views: 0




  • Quality assessment of sprouted mung beans at various storage temperatures

Abstract Views: 21  |  PDF Views: 0

Authors

Shashi Prabha
, India
Sangeeta Goomer
, India

Abstract


The present study was conducted with an objective to assess the quality of sprouted mung beans stored at different temperatures. Mung beans sprouts were processed at laboratory in controlled conditions, packed in LDPE pouches and were stored at summer room temperature (SRT) (30-32°C), winter room temperature (WRT) (15-18°C) and refrigeration temperature (RT) (7°C). Shelf life studies were conducted periodically for physical, chemical and microbiological parameters for 5 days at their respective storage temperatures. During shelf life studies, several changes were observed in sprouted samples of mung beans. There was a significant (p<0.05) increase in shoot length of sprouted mung beans samples stored at SRT followed by WRT and RT. Decrease in moisture content was significantly (p<0.05) more at RT followed by WRT and SRT. Vitamin - C content increased significantly (p<0.05) up to 1st day of storage at SRT and WRT, with decrease thereafter. Whereas at RT significant (p<0.05) increase was observed till 2nd day of storage followed by decrease afterwards. Vitamin - C content retained better at RT (16.6%) followed by WRT (6.3 %), while at SRT loss of 6.9% was observed. Acidity increased significantly at all three storage temperatures followed by subsequent decrease. Microbial count in terms of total plate count, yeast and mold count was comparatively higher at SRT followed by WRT and RT, though within acceptable range, whereas Coliform count was not detected at any stage. Thus it can be concluded that at RT (7°C) within two days of storage, optimal retention of physicochemical and microbiological qualities are achieved.

Keywords


Mung beans, sprouts, shelf life, storage, temperatures, quality



DOI: https://doi.org/10.21048/ijnd.2019.56.1.21370