The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off

   Subscribe/Renew Journal


Electro Chemical Machining (ECM) is a process that is used to machine extremely hard materials easily. It is a non-contact machining process. This ensures a higher tool life and no friction generated. The entire process is based on faradays laws of electrochemical process. With no heat affected zones (HAZ), this process holds a significant advantage over other high precision processes. This ensures that the material has neither thermal nor any other residual stresses. Nickel based alloys are known for their hardness and non-corrosive properties. This makes them unviable for machining using conventional methods as the overhead costs rise and makes them unproductive for use. ECM provides a better alternative comparatively. The alloy chosen for this analysis is Hastelloy C22. Its higher chromium content gives it better corrosion and pitting resistance. The objective of this analysis is to find the effects of various process parameters on MRR, surface finish, and dimensional deviation. The Taguchi technique has been used to investigate the effects of the ECMM process parameters and subsequently to predict sets of optimal parameters for maximum MRR and better surface finish. Grey analysis is done to find the optimal set of parameters for machining.

Keywords

Hastelloy C22, Machining, Material Removal, Optimization.
User
Subscription Login to verify subscription
Notifications
Font Size