Open Access Open Access  Restricted Access Subscription Access

Concepts and Contributions of Edge Computing in Internet of Things (IoT): A Survey


Affiliations
1 Maruthi Technocrat E Services, Chennai, Tamil Nadu, India
2 Department of Information Science and Technology, Anna University, CEG, Chennai, Tamil Nadu, India
3 Department of Computer Applications, Dr. M.G.R Educational and Research Institute, Chennai, Tamil Nadu, India
 

Edge has become a growing trend in recent years. Bringing computing and analytics remarkably close to the data where it originated is the leading cause of edge computing. As the data is growing day by day, there arises the bottleneck in computation and network layers. Due to the enormous growth of Internet of Things (IoT) devices with its recent applications, the need for real-time computation has readily driven edge computing. Today data processing is an excellent paradigm for real-time data. In the integration of various IoT devices to solve the computing perplexities, created the emergence of the Edge computing. This paper clarifies concepts and contributions of edge computing associated with IoT devices. The proposed work produces a thumbnail survey on edge computing and its performance management towards IoT devices. The characteristics and architecture of Edge computing over IoT devices are furnished. The state-of-the-art on edge computing applications in the real-time scenario is discussed in this article. The proposed work explores the key benefits of Edge computing towards IoT devices, along with the comparative principles of edge computing over the Cloud, are represented. The existing challenges of edge computing are also discussed in this work.

Keywords

Edge Computing, IoT Devices, Data Processing, Performance Computing.
User
Notifications
Font Size

  • Wang, R., Yan, J., Wu, D., Wang, H. and Yang, Q., 2018. Knowledge-centric edge computing based on virtualized D2D communication systems. IEEE Communications Magazine, 56(5), pp.32-38.
  • Gao, Y., Guan, H., Qi, Z., Song, T., Huan, F. and Liu, L., 2014. Service level agreement based energy-efficient resource management in cloud data centers. Computers & Electrical Engineering, 40(5), pp.1621-1633.
  • Coady, Y., Hohlfeld, O., Kempf, J., McGeer, R. and Schmid, S., 2015. Distributed cloud computing: Applications, status quo, and challenges. ACM SIGCOMM Computer Communication Review, 45(2), pp.38-43.
  • Satyanarayanan, M., 2017. The emergence of edge computing. Computer, 50(1), pp.30-39.
  • Satyanarayanan, M., Bahl, P., Caceres, R. and Davies, N., 2009. The case for vm-based cloudlets in mobile computing. IEEE pervasive Computing, 8(4), pp.14-23.
  • Elkhatib, Y., Porter, B., Ribeiro, H.B., Zhani, M.F., Qadir, J. and Rivière, E., 2017. On using micro-clouds to deliver the fog. arXiv preprint arXiv:1703.00375.
  • Peng, M. and Zhang, K., 2016. Recent advances in fog radio access networks: Performance analysis and radio resource allocation. IEEE Access, 4, pp.5003-5009.
  • Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M. and Ayyash, M., 2015. Internet of things: A survey on enabling technologies, protocols, and applications. IEEE communications surveys & tutorials, 17(4), pp.2347-2376.
  • Evans, D., 2011. The internet of things: How the next evolution of the internet is changing everything. CISCO white paper, 1(2011), pp.1-11.
  • Chiang, M. and Zhang, T., 2016. Fog and IoT: An overview of research opportunities. IEEE Internet of Things Journal, 3(6), pp.854-864.
  • Ganz, F., Puschmann, D., Barnaghi, P. and Carrez, F., 2015. A practical evaluation of information processing and abstraction techniques for the internet of things. IEEE Internet of Things journal, 2(4), pp.340-354.
  • Razzaque, M.A., Milojevic-Jevric, M., Palade, A. and Clarke, S., 2015. Middleware for internet of things: a survey. IEEE Internet Things Journal. 3(1), 70–95 (2016).
  • Brogi, A. and Forti, S., 2017. QoS-aware deployment of IoT applications through the fog. IEEE Internet of Things Journal, 4(5), pp.1185-1192.
  • Chen, M., Li, W., Hao, Y., Qian, Y. and Humar, I., 2018. Edge cognitive computing based smart healthcare system. Future Generation Computer Systems, 86, pp.403-411.
  • Zhang, Q., Yu, Z., Shi, W. and Zhong, H., 2016, October. Demo abstract: Evaps: Edge video analysis for public safety. In 2016 IEEE/ACM Symposium on Edge Computing (SEC) (pp. 121-122). IEEE.
  • 16. Khan, L.U., Yaqoob, I., Tran, N.H., Kazmi, S.A., Dang, T.N. and Hong, C.S., 2020. Edge computing enabled smart cities: A comprehensive survey. IEEE Internet of Things Journal.DOI: 10.1109/JIOT.2020.2987070
  • Stojkoska, B.R. and Trivodaliev, K., 2017, November. Enabling internet of things for smart homes through fog computing. In 2017 25th Telecommunication Forum (TELFOR) (pp. 1-4). IEEE.
  • Olaniyan, R., Fadahunsi, O., Maheswaran, M. and Zhani, M.F., 2018. Opportunistic Edge Computing: Concepts, opportunities, and research challenges. Future Generation Computer Systems, 89, pp.633-645.
  • Kim, Y. and Huh, E.N., 2019. EDCrammer: An Efficient Caching Rate-Control Algorithm for Streaming Data on Resource-Limited Edge Nodes. Applied Sciences, 9(12), p.2560.
  • Liu, Y., Xu, C., Zhan, Y., Liu, Z., Guan, J. and Zhang, H., 2017. Incentive mechanism for computation offloading using edge computing: A Stackelberg game approach. Computer Networks, 129(2), pp.399-409.
  • Yang, J., Lu, Z. and Wu, J., 2018. Smart-toy-edge-computing-oriented data exchange based on blockchain. Journal of Systems Architecture, 87, pp.36-48.
  • Zhao, Z., Min, G., Gao, W., Wu, Y., Duan, H. and Ni, Q., 2018. Deploying edge computing nodes for large-scale IoT: A diversity aware approach. IEEE Internet of Things Journal, 5(5), pp.3606-3614.
  • Weisong, S., Xingzhou, Z., Yifan, W. and Qingyang, Z., 2019. Edge computing: state-of-the-art and future directions. Journal of Computer Research and Development, 56(1), p.69.
  • Weisong, S., Hui, S., Jie, C., Quan, Z. and Wei, L., 2017. Edge computing—An emerging computing model for the Internet of everything era. Journal of Computer Research and Development, 54(5), p.907-924
  • Wang, Y., Liu, M., Zheng, P., Yang, H. and Zou, J., 2020. A smart surface inspection system using faster R-CNN in cloud-edge computing environment. Advanced Engineering Informatics, 43, p.101037.
  • Shi, W., Cao, J., Zhang, Q., Li, Y. and Xu, L., 2016. Edge computing: Vision and challenges. IEEE internet of things journal, 3(5), pp.637-646.
  • Satyanarayanan, M., 2017. The emergence of edge computing. Computer, 50(1), pp.30-39. [28] Green, J., 2014. The internet of things reference model. In Internet of Things World Forum (pp. 1-12).
  • Sun, X. and Ansari, N., 2016. EdgeIoT: Mobile edge computing for the Internet of Things. IEEE Communications Magazine, 54(12), pp.22-29.
  • Alrawais, A., Alhothaily, A., Hu, C. and Cheng, X., 2017. Fog computing for the internet of things: Security and privacy issues. IEEE Internet Computing, 21(2), pp.34-42.
  • Kang, J., Yu, R., Huang, X. and Zhang, Y., 2017. Privacy-preserved pseudonym scheme for fog computing supported internet of vehicles. IEEE Transactions on Intelligent Transportation Systems, 19(8), pp.2627-2637.
  • Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R.H., Morrow, M.J. and Polakos, P.A., 2017. A comprehensive survey on fog computing: State-of-the-art and research challenges. IEEE Communications Surveys & Tutorials, 20(1), pp.416-464.
  • Jararweh, Y., Doulat, A., AlQudah, O., Ahmed, E., Al-Ayyoub, M. and Benkhelifa, E., 2016, May. The future of mobile cloud computing: integrating cloudlets and mobile edge computing. In 2016 23rd International conference on telecommunications (ICT) (pp. 1-5). IEEE.
  • Li, H., Ota, K. and Dong, M., 2018. Learning IoT in edge: Deep learning for the Internet of Things with edge computing. IEEE network, 32(1), pp.96-101.
  • Zissis, D. and Lekkas, D., 2012. Addressing cloud computing security issues. Future Generation computer systems, 28(3), pp.583-592.
  • Liang, H., Huang, D., Cai, L.X., Shen, X. and Peng, D., 2011, April. Resource allocation for security services in mobile cloud computing. In 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (pp. 191-195). IEEE.
  • Wu, Y., Liu, Y., Ahmed, S.H., Peng, J., and Abd El-Latif, A.A., 2019. Dominant Data Set Selection Algorithms for Electricity Consumption Time-Series Data Analysis Based on Affine Transformation. IEEE Internet of Things Journal, 7(5), pp.4347-4360.
  • Taleb, T., Dutta, S., Ksentini, A., Iqbal, M. and Flinck, H., 2017. Mobile edge computing potential in making cities smarter. IEEE Communications Magazine, 55(3), pp.38-43.
  • Cao, J., Ren, L., Shi, W. and Yu, Z., 2014, October. A framework for component selection in collaborative sensing application development. In 10th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing (pp. 104-113). IEEE.
  • Debauche, O., Mahmoudi, S., Mahmoudi, S.A., Manneback, P. and Lebeau, F., 2020. A new edge architecture for ai-iot services deployment. Procedia Computer Science, 175, pp.10-19.

Abstract Views: 289

PDF Views: 0




  • Concepts and Contributions of Edge Computing in Internet of Things (IoT): A Survey

Abstract Views: 289  |  PDF Views: 0

Authors

S. Magesh
Maruthi Technocrat E Services, Chennai, Tamil Nadu, India
J. Indumathi
Department of Information Science and Technology, Anna University, CEG, Chennai, Tamil Nadu, India
S. Radha RamMohan
Department of Computer Applications, Dr. M.G.R Educational and Research Institute, Chennai, Tamil Nadu, India

Abstract


Edge has become a growing trend in recent years. Bringing computing and analytics remarkably close to the data where it originated is the leading cause of edge computing. As the data is growing day by day, there arises the bottleneck in computation and network layers. Due to the enormous growth of Internet of Things (IoT) devices with its recent applications, the need for real-time computation has readily driven edge computing. Today data processing is an excellent paradigm for real-time data. In the integration of various IoT devices to solve the computing perplexities, created the emergence of the Edge computing. This paper clarifies concepts and contributions of edge computing associated with IoT devices. The proposed work produces a thumbnail survey on edge computing and its performance management towards IoT devices. The characteristics and architecture of Edge computing over IoT devices are furnished. The state-of-the-art on edge computing applications in the real-time scenario is discussed in this article. The proposed work explores the key benefits of Edge computing towards IoT devices, along with the comparative principles of edge computing over the Cloud, are represented. The existing challenges of edge computing are also discussed in this work.

Keywords


Edge Computing, IoT Devices, Data Processing, Performance Computing.

References





DOI: https://doi.org/10.22247/ijcna%2F2020%2F203914