Open Access Open Access  Restricted Access Subscription Access

A Survey on Edge-Based Internet-of-Things


Affiliations
1 Department of Electronics and Communication Engineering, National Institute of Technology, Srinagar, India
 

Internet of Things (IoT) is improving the overall quality of our lives by helping us to connect, measure and control the different parameters of the system in an automated manner. The IoT devices are generating massive volumes of data that needs to be processed and on the basis of the results, decisions are made. The IoT devices have limited resource capabilities, so these devices utilize the services of the cloud servers. The issue in utilizing the services of the cloud is that it fails to provide support for real-time and time-critical applications. In order to reduce the response time of the system, another service layer is added to the architecture i.e. Edge computing. The IoT devices will now send their requests to the edge servers. Utilizing the services of the edge servers will reduce both the network traffic to the cloud and response time of the system. This paper presents a detailed survey of Edge-based IoT taking various parameters like architecture, bandwidth, security, energy, payload, etc. into consideration.

Keywords

IoT, Edge, Cloud, 5G.
User
Notifications
Font Size

  • D. Linthicum, ``Responsive data architecture for the Internet of Things,'' Computer, vol. 49, no. 10, pp. 72_75, 2016.
  • J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, ``A survey on Internet of Things: Architecture, enabling technologies, security, and privacy, and applications,'' IEEE Internet Things J., vol. 4, no. 5, pp. 1125_1142, Oct. 2017.
  • J. A. Stankovic, ``Research directions for the Internet of Things,'' IEEE Internet Things J., vol. 1, no. 1, pp. 3_9, Feb. 2014.
  • J. Wu and W. Zhao, ``Design and realization of internet: From net of things to Internet of Things,'' ACM Trans. Cyber-Phys. Syst., vol. 1, no. 1, pp. 2:1_2:12, Nov. 2016. [Online]. Available: http://doi. acm.org/10.1145/2872332
  • J. Lin, W. Yu, X. Yang, Q. Yang, X. Fu, and W. Zhao, ``A real-time en-route route guidance decision scheme for transportation-based cyberphysical systems,'' IEEE Trans. Veh. Technol., vol. 66, no. 3, pp. 2551_2566, Mar. 2017.
  • N. Mohamed, J. Al-Jaroodi, I. Jawhar, S. Lazarova-Molnar, and S. Mahmoud, ``SmartCityWare: A service-oriented middleware for cloud and fog enabled smart city services,'' IEEE Access, vol. 5, pp. 17576_17588, 2017.
  • S. Mallapuram, N. Ngwum, F. Yuan, C. Lu, and. Yu, ``Smart city: The state of the art, datasets, and evaluation platforms,'' in Proc. IEEE/ACIS 16th Int. Conf. Comput. Inf. Sci. (ICIS), May 2017, pp. 447_452.
  • M. D. Cia et al., ``Using smart city data in 5G self-organizing networks,'' IEEE Internet Things J., to be published.
  • Y. Yan, Y. Qian, H. Sharif, and D. Tipper, ``A survey on cybersecurity for smart grid communications,'' IEEE Commun. Surveys Tuts., vol. 14, no. 4, pp. 998_1010, Oct. 2012.
  • J. Lin,W. Yu, and X. Yang, ``Towards multistep electricity prices in smart grid electricity markets,'' IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 1, pp. 286_302, Jan. 2016.
  • L. Catarinucciet al., "An IoT-Aware Architecture for Smart Healthcare Systems," in IEEE Internet of Things Journal, vol. 2, no. 6, pp. 515-526, Dec. 2015. DOI: 10.1109/JIOT.2015.2417684.
  • “Gartner: Top 10 Strategic Technology Trends For 2013.”0020 [Online]. Available: https://www.forbes.com/sites/ericsavitz/2012/10/23/gartner-top-10-strategic-technology-trends-for-2013/#502d3b29b761. [Accessed: 10-Jan-2019].
  • F. Wortmann and K. Flüchter, ``Internet of Things,'' Bus. Inf. Syst. Eng.,vol. 57, no. 3, pp. 221_224, 2015.
  • A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M.Ayyash, ``Internet of Things: A survey on enabling technologies, protocols, and applications,'' IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 2347_2376, 4th Quart., 2015.
  • W. Yu, G. Xu, Z. Chen, and P. Moulema, ``A cloud computing-based architecture for cyber security situation awareness,'' in Proc. IEEE Conf.Commun. Netw. Secur. (CNS), Oct. 2013, pp. 488_492.
  • Z. Chen et al., ``A cloud computing-based network monitoring and threat detection system for critical infrastructures,'' Big Data Res., vol. 3, pp. 10_23, Apr. 2016.
  • W. Yu, H. Xu, H. Zhang, D. Grif_th, and N. Golmie, ``Ultra-dense networks: Survey of state of the art and future directions,'' in Proc. 25th Int. Conf. Comput. Commun. Netw. (ICCCN), Aug. 2016, pp. 1_10.
  • M. Agarwal, A. Roy, and N. Saxena, ``Next-generation 5G wireless networks: A comprehensive survey,'' IEEE Commun. Surveys Tuts., vol. 18, no. 3, pp. 1617_1655, 3rd Quart., 2016.
  • P. Demestichaset al., ``5G on the horizon: Key challenges for the radio access network,'' IEEE Veh. Technol. Mag., vol. 8, no. 3, pp. 47_53, Sep. 2013.
  • A. Ahmed and E. Ahmed, ``Asurvey on mobile edge computing,'' in Proc.10th Int. Conf. Intell. Syst. Control (ISCO), Jan. 2016, pp. 1_8.
  • Y. Jararweh, A. Doulat, O. AlQudah, E. Ahmed, M. Al-Ayyoub, andE. Benkhelifa, ``The future of mobile cloud computing: Integrating cloudlets and mobile edge computing,'' in Proc. 23rd Int. Conf. Telecommun. (ICT), May 2016, pp. 1_5
  • L. Tong, Y. Li, and W. Gao, ``A hierarchical edge cloud architecture for mobile computing,'' in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun. (INFOCOM), Apr. 2016, pp. 1_9.
  • G. Wang, Y. Zhao, J. Huang, and W. Wang, ``The controller placement problem in software de_ned networking: A survey,'' IEEE Netw., vol. 31, no. 5, pp. 21_27, Sep. 2017.
  • D. Zhu, X. Yang, P. Zhao, and W. Yu, ``Towards effective intra-_ow network coding in software de_ned wireless mesh networks,'' in Proc. 24th Int. Conf. Comput. Commun. Netw. (ICCCN), Aug. 2015, pp. 1_8.
  • Y. Jararweh, A. Doulat, A. Darabseh, M. Alsmirat, M. Al-Ayyoub, and E. Benkhelifa, ``SDMEC: Software de_ned system for mobile edge computing,'' in Proc. IEEE Int. Conf. Cloud Eng. Workshop (IC2EW), Apr. 2016, pp. 88_93.
  • P. Du and A. Nakao, ``Application speci_c mobile edge computing through network softwarization,'' in Proc. 5th IEEE Int. Conf. Cloud Netw. (Cloudnet), Oct. 2016, pp. 130_135.
  • Y. Jararweh, A. Doulat, A. Darabseh, M. Alsmirat, M. Al-Ayyoub, and E. Benkhelifa, ``SDMEC: Software de_ned system for mobile edge computing,'' in Proc. IEEE Int. Conf. Cloud Eng. Workshop (IC2EW), Apr. 2016, pp. 88_93.
  • A. Manzalini and N. Crespi, ``An edge operating system enabling anything-as-a-service,'' IEEE Commun. Mag., vol. 54, no. 3, pp. 62_67, Mar. 2016.
  • O. Salman, I. Elhajj, A. Kayssi, and A. Chehab, ``Edge computing enabling the Internet of Things,'' in Proc. IEEE 2ndWorld Forum Internet Things (WF-IoT), Dec. 2015, pp. 603_608.
  • T. Lin, B. Park, H. Bannazadeh, and A. Leon-Garcia, ``Demo abstract: End-to-end orchestration across SDI smart edges,'' in Proc. IEEE/ACM Symp. Edge Comput. (SEC), Oct. 2016, pp. 127_128.
  • F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, ``Fog computing: A platform for the Internet of Things and analytics,'' in Big Data and Internet of Things: A Roadmap for Smart Environments (Studies in Computational Intelligence), vol. 546. Cham, Switzerland: Springer, 2014, pp. 169_186.
  • H. Jiang, F. Shen, S. Chen, K.-C. Li, and Y.-S. Jeong, ``A secure and scalable storage system for aggregate data in IoT,'' Future GenerationComput. Syst., vol. 49, pp. 133_141, Aug. 2015.
  • X. Yang, T.Wang, X. Ren, and. Yu, ``Survey on improving data utility in differentially private sequential data publishing,'' IEEE Trans. Big Data, to be published.
  • G. Ananthanarayananet al., ``Real-time video analytics: The killer app for edge computing,'' Computer, vol. 50, no. 10, pp. 58_67, 2017.
  • J. C. Niebles and L. Fei-Fei, ``A hierarchical model of shape and appearance for human action classi_cation,'' in Proc. IEEE Conf. Comput. Vis.PatternRecognit. (CVPR), Jun. 2007, pp. 1_8.
  • G. Botella and C. García, ``Real-time motion estimation for image and video processing applications,'' J. Real-Time Image Process., vol. 11, no. 4, pp. 625_631, Apr. 2016. [Online]. Available: http://dx.doi.org/10.1007/s11554-014-0478-y.
  • J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, ``Delay-optimal computation task scheduling for mobile-edge computing systems,'' in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2016, pp. 1451_1455.
  • G. Ananthanarayanan, V. Bahl, and P. Bodík. (2017). Microsoft Live Video Analytics. [Online]. Available: https://www.microsoft.com/enus/research/project/live-video-analytics/
  • J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani, ``Hierarchical model-based motion estimation,'' in Proc. Eur. Conf. Comput. Vis., 1992, pp. 237_252.
  • I. Ketykó, L. Kecskés, C. Nemes, and L. Farkas, ``Multi-user computation offloading as multiple knapsack problem for 5G mobile edge computing,'' in Proc. Eur. Conf. Netw. Commun. (EuCNC), 2016, pp. 225_229.
  • Y. Liu, S.Wang, and F. Yang, ``Poster abstract: A multi-user computation offloading algorithm based on game theory in mobile cloud computing,'' in Proc. IEEE/ACM Symp. Edge Comput. (SEC), Oct. 2016, pp. 93_94.
  • L. Tianze, W. Muqing, and Z. Min, ``Consumption considered an optimal scheme for task offloading in mobile edge computing,'' in Proc. 23rd Int.Conf. Telecommun. (ICT), 2016, pp. 1_6.
  • M. H. ur Rehman, C. Sun, T. Y. Wah, A. Iqbal, and P. P. Jayaraman, ``Opportunistic computation offloading in mobile edge cloud computing environments,'' in Proc. 17th IEEE Int. Conf. Mobile Data Man-age. (MDM), vol. 1. Jun. 2016, pp. 208_213.
  • W. Gao, ``Opportunistic peer-to-peer mobile cloud computing at the tactical edge,'' in Proc. IEEE Military Commun. Conf. (MILCOM), Oct. 2014, pp. 1614_1620.
  • Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, ``Mobile-edge computing: Partial computation offloading using dynamic voltage scaling,''IEEE Trans. Commun., vol. 64, no. 10, pp. 4268_4282, Oct. 2016.
  • M. Deng, H. Tian, and X. Lyu, ``Adaptive sequential offloading game for multi-cell mobile edge computing,'' in Proc. 23rd Int. Conf. Telecommun. (ICT), May 2016, pp. 1_5.
  • Y. Nam, S. Song, and J.-M. Chung, ``Clustered NFV service chaining optimization in mobile edge clouds,'' IEEE Commun. Lett., vol. 21, no. 2, pp. 350_353, Feb. 2017.
  • N. Fernando, S. W. Loke, and W. Rahayu, ``Computing with nearby mobile devices: A work-sharing algorithm for mobile edge-clouds,'' IEEETrans. Cloud Comput., to be published.
  • X. Sun and N. Ansari, ``PRIMAL: PRo_t maximization avatar placement for mobile edge computing,'' in Proc. IEEE Int. Conf. Commun. (ICC),May 2016, pp. 1_6.
  • H. Lee and J. Flinn, ``Reducing tail response time of vehicular applications,'' in Proc. IEEE/ACM Symp. Edge Comput. (SEC), Oct. 2016, pp. 103_104.
  • T. G. Rodrigues, K. Suto, H. Nishiyama, and N. Kato, ``Hybrid method for minimizing service delay in edge cloud computing through VM migration and transmission power control,'' IEEE Trans. Comput., vol. 66, no. 5, pp. 810_819, May 2017.
  • S. Abdelwahab, B. Hamdaoui, M. Guizani, and T. Znati, ``REPLISOM: Disciplined tiny memory replication for massive IoT devices in LTE edge cloud,'' IEEE Internet Things J., vol. 3, no. 3, pp. 327_338, Jan. 2016.
  • H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and V. Vlassov, ``SpanEdge: Towards unifying stream processing over central and near the edge data centers,'' in Proc. IEEE/ACM Symp. Edge Comput. (SEC), Oct. 2016, pp. 168_178.
  • K. Zhang, Y. Mao, S. Leng, A. Vinel, and Y. Zhang, ``Delay constrained of_oading for mobile edge computing in cloud-enabled vehicular networks,'' in Proc. 8th Int. Workshop Resilient Netw. Design Modelling (RNDM), Sep. 2016, pp. 288_294.
  • J. Plachy, Z. Becvar, and E. C. Strinati, ``Cross-layer approach enabling communication of a high number of devices in 5G mobile networks,'' in Proc. IEEE 11th Int. Conf. Wireless Mobile Comput., Netw. Commun. (WiMob), Oct. 2015, pp. 809_816.
  • D. N. Serpanos, L. Georgiadis, and T. Bouloutas, ``MMPacking: A load and storage balancing algorithm for distributed multimedia servers,'' in Proc. IEEE Int. Conf. Comput. Design, VLSI Comput. Process. (ICCD), Jun. 1996, pp. 170_174.
  • A. Singh, M. Korupolu, and D. Mohapatra, ``Server-storage virtualization: Integration and load balancing in data centers,'' in Proc. ACM/IEEE Conf. Supercomput., Nov. 2008, p. 53.
  • D. Ford et al., ``Availability in globally distributed storage systems,'' in Proc. Osdi, vol. 10. 2010, pp. 1_7.
  • F. Chang et al., ``Bigtable: A distributed storage system for structured data,'' ACM Trans. Comput. Syst., vol. 26, no. 2, 2008, Art. no. 4.
  • A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, ``A survey on network codes for distributed storage,'' Proc. IEEE, vol. 99, no. 3, pp. 476_489, Mar. 2011.
  • E. S. Andreas et al., ``Proactive replication for data durability,'' in Proc.5th Int. Workshop Peer-Peer Syst. (IPTPS), 2006, pp. 1_6.
  • A. Van Kempen, E. Le Merrer, and N. Le Scouarnec, ``Method of data replication in a distributed data storage system and corresponding device,'' U.S. Patent 8 812 801 B2, Aug. 19, 2014.
  • T. Zhao, S. Zhou, X. Guo, Y. Zhao, and Z. Niu, ``Pricing policy and computational resource provisioning for delay-aware mobile edge computing,'' in Proc. IEEE/CIC Int. Conf. Commun. China (ICCC), Jul. 2016, pp. 1_6.
  • A. Kiani and N. Ansari. (Dec. 2016). ``Towards hierarchical mobile edge computing: An auction-based pro_t maximization approach.'' [Online]. Available: https://arxiv.org/abs/1612.00122
  • Y. Zhang, C. Lee, D. Niyato, and P. Wang, ``Auction approaches for resource allocation in wireless systems: A survey,'' IEEE Commun.Surveys Tuts., vol. 15, no. 3, pp. 1020_1041, 3rd Quart., 2013.
  • C. You, K. Huang, H. Chae, and B.-H. Kim, ``Energy-ef_cient resource allocation for mobile-edge computation of_oading,'' IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1397_1411, Mar. 2017.
  • L. Zhang et al., ``Named data networking (NDN) project,'' Xerox Palo Alto Res. Center-PARC, Palo Alto, CA, USA, Tech. Rep. NDN-0001, 2010.
  • D. Raychaudhuri, K. Nagaraja, and A. Venkataramani, ``MobilityFirst: A robust and trustworthy mobility-centric architecture for the future Internet,'' ACM SIGMOBILE Mobile Comput. Commun. Rev., vol. 16,no. 3, pp. 2_13, 2012.
  • Q. Yang, D. An, R. Min, W. Yu, X. Yang, and W. Zhao, ``On optimal PMU placement-based defense against data integrity attacks in smartgrid,'' IEEE Trans. Inf. Forensics Security, vol. 12, no. 7, pp. 1735_1750, Jul. 2017.
  • Q. Yang, J. Yang, W. Yu, D. An, N. Zhang, and W. Zhao, ``On false data-injection attacks against power system state estimation: Modelling and countermeasures,'' IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 3, pp. 717_729, Mar. 2014.
  • Y. Huang, X. Yang, S. Yang, W. Yu, and X. Fu, ``A cross-layer approach handling link asymmetry for wireless mesh access networks,'' IEEE Trans. Veh. Technol., vol. 60, no. 3, pp. 1045_1058, Mar. 2011.
  • W. Yu, H. Xu, A. Hematian, D. Grif_th, and N. Golmie, ``Towards energy efficiency in ultra-dense networks,'' in Proc. IEEE 35th Int. Perform. Comput. Commun. Conf. (IPCCC), Dec. 2016, pp. 1_8.
  • A. Mosenia and N. K. Jha, ``A comprehensive study of the security of Internet-of-Things,'' IEEE Trans. Emerg. Topics Comput., vol. 5, no. 4, pp. 586_602, Oct./Dec. 2017.
  • M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, ``Fully homomorphic encryption over the integers,'' in Proc. Annu. Int. Conf. Theory Appl. Cryptograph. Techn., 2010, pp. 24_43.
  • D. Li, Q. Yang, W. Yu, D. An, X. Yang, and W. Zhao, ``A strategy-proof privacy-preserving double auction mechanism for electrical vehicles demand response in microgrids,'' in Proc. IEEE Int. Perform. Comput.Commun. Conf. (IPCCC), Dec. 2017.
  • C. Anglano, R. Gaeta, and M. Grangetto, ``Securing coding-based cloud storage against pollution attacks,'' IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 5, pp. 1457_1469, May 2017.
  • R. Gennaro, C. Gentry, and B. Parno, ``Non-interactive veri_able computing: Outsourcing computation to untrusted workers,'' in Advances in Cryptology_CRYPTO(Lecture Notes in Computer Science), vol. 6223. Berlin, Germany: Springer, 2010, pp. 465_482.
  • S. Echeverría, D. Klinedinst, K. Williams, and G. A. Lewis, ``Establishing trusted identities in disconnected edge environments,'' in Proc. IEEE/ACM Symp. Edge Comput. (SEC), Oct. 2016, pp. 51_63.
  • J. Tan, R. Gandhi, and P. Narasimhan, ``Poster abstract: BUFS: Towards bottom-up foundational security for software in the Internet-of-Things,'' in Proc. IEEE/ACM Symp. Edge Comput. (SEC), Oct. 2016, pp. 107_108.
  • A. Mtibaa, K. Harras, and H. Alnuweiri, ``Friend or foe? Detecting and isolating malicious nodes in mobile edge computing platforms,'' in Proc. IEEE 7th Int. Conf. Cloud Comput. Technol. Sci. (CloudCom), Nov. 2015, pp. 42_49.
  • E. Cauet al., ``Ef_cient exploitation of mobile edge computing for virtualized 5G in EPC architectures,'' in Proc. 4th IEEE Int. Conf. Mobile Cloud Comput., Serv., Eng. (MobileCloud), Mar. 2016, pp. 100_109.
  • S.-C. Hung, H. Hsu, S.-Y. Lien, and K.-C. Chen, ``Architecture harmonization between cloud radio access networks and fog networks,'' IEEE Access, vol. 3, pp. 3019_3034, 2015.
  • W. Em_nger, A. Dubey, P. Volgyesi, J. Sallai, and G. Karsai, ``Demo abstract: RIAPS_A resilient information architecture platform for edge computing,'' in Proc. IEEE/ACM Symp. Edge Comput. (SEC), Oct. 2016, pp. 119_120.
  • G. Xu,W. Yu, D. Grif_th, N. Golmie, and P. Moulema, ``Toward integrating distributed energy resources and storage devices in smart grid,'' IEEE Internet Things J., vol. 4, no. 1, pp. 192_204, Feb. 2017.

Abstract Views: 5

PDF Views: 0




  • A Survey on Edge-Based Internet-of-Things

Abstract Views: 5  |  PDF Views: 0

Authors

Hushmat Amin Kar
Department of Electronics and Communication Engineering, National Institute of Technology, Srinagar, India
G. M. Rather
Department of Electronics and Communication Engineering, National Institute of Technology, Srinagar, India

Abstract


Internet of Things (IoT) is improving the overall quality of our lives by helping us to connect, measure and control the different parameters of the system in an automated manner. The IoT devices are generating massive volumes of data that needs to be processed and on the basis of the results, decisions are made. The IoT devices have limited resource capabilities, so these devices utilize the services of the cloud servers. The issue in utilizing the services of the cloud is that it fails to provide support for real-time and time-critical applications. In order to reduce the response time of the system, another service layer is added to the architecture i.e. Edge computing. The IoT devices will now send their requests to the edge servers. Utilizing the services of the edge servers will reduce both the network traffic to the cloud and response time of the system. This paper presents a detailed survey of Edge-based IoT taking various parameters like architecture, bandwidth, security, energy, payload, etc. into consideration.

Keywords


IoT, Edge, Cloud, 5G.

References





DOI: https://doi.org/10.22247/ijcna%2F2019%2F190369