Open Access Open Access  Restricted Access Subscription Access

Connectivity Based Positioning System for Underground Vehicular Ad Hoc Networks


Affiliations
1 Systems and Computers Department, Al-Azhar University, Cairo, Egypt
 

Underground vehicular ad-hoc networks are indorsing wireless networks because they can realize many goals such as improving the driving safety and monitoring the emergency alerts in underground environments (i.e., road tunnels). It is necessary for vehicular nodes to recognize their positions to achieve these goals. However, Global Positioning System (GPS) devices cannot operate in underground environments; furthermore, the signal propagation faces many effects such as attenuation, multipath and shadow fading. Traditional distance measurement techniques are inadequate to estimate vehicular node locations in underground environments because the expected measurement errors lead to poor positioning. In this paper, the network connectivity is exploited to estimate vehicular node positions instead of radio ranging methods. This work investigates one of the most important techniques that are based on the network connectivity (i.e., Monte Carlo) and proposes new heuristics that achieve an appropriate position estimation accuracy for vehicular nodes. As the underlying method is predictable, it enables these nodes to know their positions all the time inside underground environments. In addition, an efficient deployment strategy is proposed in this work to well organize reference nodes (i.e., fixed nodes that their positions are preconfigured) inside a road tunnel. The proposed scheme performance is verified by NS2 simulator and compared with the current Monte Carlo localization schemes where the simulation results indicate the superiority of the proposed scheme.

Keywords

Underground VANET, Road Tunnels, Positioning, Network Connectivity, Monte Carlo Localization.
User
Notifications
Font Size

  • S. Al-Sultan, M. Al-Doori, A. Al-Bayatti, and H. Zedan, "A Comprehensive Survey on Vehicular Ad Hoc Network, " Journal of Network and Computer Applications, Elsevier, vol 37, pp. 380-392, 2014. https://doi.org/10.1016/j.jnca.2013.02.036
  • Joe, M. Milton, and B. Ramakrishnan, "Review of Vehicular Ad Hoc Network Communication Models including WVANET (Web VANET) Model and WVANET Future Research Directions," Journal of Wireless Netw, Springer, vol. 22, pp. 2369-2386, 2016. doi:10.1007/s11276-015-1104-z.
  • Joe, M. Milton, and B. Ramakrishnan, "WVANET: Modelling a Novel Web Based Communication Architecture for Vehicular Network," Journal of Wireless Pers Commun, Springer, vol. 85, pp. 1987-2001, 2015. doi:10.1007/s11277-015-2886-0
  • H. Hartenstein, and K. Laberteaux, "A Tutorial Survey on Vehicular Ad Hoc Networks, " IEEE Communications Magazine, pp.164 –171, 2008. doi: 10.1109/MCOM.2008.4539481
  • B. Ramakrishnan, M. Selvi, R. Nishanth, and Joe, M. Milton, "An Emergency Message Broadcasting Technique Using Transmission Power Based Clustering Algorithm for Vehicular Ad Hoc Network," Journal of Wireless Pers Commun, Springer, 2016. doi:10.1007/s11277-016-3772-0
  • B. Ramakrishnan, R. Nishanth, Joe, M. Milton, and M. Selvi, "Cluster Based Emergency Message Broadcasting Technique for Vehicular Ad Hoc Network," Journal of Wireless Netw, Springer, 2015. doi:10.1007/s11276-015-1134-6
  • Z. Sun and I. Akyildiz, "Influences of Vehicles on Signal Propagation in Road Tunnels, " IEEE International Conference on Communications (ICC), 2010. doi: 10.1109/ICC.2010.5502782
  • T. Yan, W. Zhang, and G. Wang, "A Grid-Based On-Road Localization System in VANET with Linear Error Propagation", IEEE Trans. on Wireless Communications, vol. 13, no. 2, pp. 861-870, 2014. doi: 10.1109/TWC.2013.122313.130547
  • Y. Agarwal, K. Jain, S. Kumar and G.Bhardwaj, "TLST: Time of Arrival Based Localization and Smart Tunnel concept in VANETs", 3rd International Conference on Signal Processing and Integrated Networks (SPIN), 2016. doi: 10.1109/SPIN.2016.7566802
  • M. Li, "A Novel Ultra-Wideband Hybrid Localization Scheme in Coal Mine, " Journal of Communications Vol. 10, No. 11, Nov. 2015. doi: 10.12720/jcm.10.11.889-895
  • G. Chen, R. Zetik and H. Yan, "Time of Arrival Estimation for Range-based Localization in UWB Sensor Networks," IEEE Int'l Conference on Ultra-Wideband (ICUWB), 2010. doi: 10.1109/ICUWB.2010.5614041
  • P. Singh and S. Agrawal, "TDOA Based Node Localization in WSN Using Neural Networks," IEEE Int'l Conference on Communication Systems and Network Technologies (CSNT), 2013. doi: 10.1109/CSNT.2013.90
  • P. Kułakowskia, J. Vales-Alonsob, E.Egea-Lópezb, W. Ludwina and J. García-Harob, "Angle-of-Arrival Localization based on Antenna Arrays for Wireless Sensor Networks," Computers & Electrical Engineering, Elsevier, vol. 36, no. 6, pp. 1181–1186, Nov. 2010. http://dx.doi.org/10.1016/j.compeleceng.2010.03.007
  • S. Abdel-Mageid, "Autonomous Localization Scheme for Mobile Sensor Networks in Fading Environments", IEEE Int’l Conference on Selected Topics in Mobile & Wireless Networking (MoWNeT), 2016. doi: 10.1109/MoWNet.2016.7496598
  • S. Abdel-Mageid, "Self-Correcting Localization Scheme for Vehicle to Vehicle Communication," International Journal of Computer Networks and Applications (IJCNA), Volume 3, Issue 5, pp. 95-107, September - October 2016. DOI: 10.22247/ijcna/2016/48829
  • L. Hu and D. Evans, "Localization for Mobile Sensor Networks, " Proc. ACM MobiCom, pp. 45-47, Sept. 2004. doi: 10.1145/1023720.1023726
  • A. Baggio and K. Langendoen, "Monte-Carlo Localization for Mobile Wireless Sensor Networks, " Proc. Second Int’l Conf. Mobile Ad-Hoc and Sensor Networks, pp. 317-328, Dec. 2006. http://dx.doi.org/10.1016/j.adhoc.2007.06.004
  • M. Rudafshani and S. Datta, "Localization in Wireless Sensor Networks, " Proc. Int’l Conf. Information Processing in Sensor Networks (IPSN), pp. 51-60, Apr. 2007.
  • S. Zhang, J. Cao, L. Chen, and D. Chen, "Locating Nodes in Mobile Sensor Networks More Accurately and Faster, " Proc. Ann. IEEE Conf. Sensor and Ad Hoc Comm. and Networks (SECON), pp. 37-45, June 2008. doi: 10.1109/SAHCN.2008.15
  • J. Sheu, W. Hu, J. Lin, "Distributed Localization Scheme for Mobile Sensor Networks, " IEEE Transaction ON Mobile Computing, vol. 9, no. 4, pp. 516-526, April 2010. doi: 10.1109/TMC.2009.149
  • S. Kumar, K. Kislay, M. Singhy and R. Hegde, "A Range-Free Tracking Algorithm in Vehicular Ad-Hoc Networks," 20th National Conference on Communications (NCC), 2014. doi: 10.1109/NCC.2014.6811310
  • T. Rappaport, "Wireless Communications: Principles and Practice". Prentice Hall, 2nd edition, 2002.
  • M. Prasad & P. Dalela, "Some Experimental Investigation of the Effect of Railway Tunnels on Mobile Communications in Western India," Ann. Telecommun., springer, vol 64, pp. 247–257, 2009. doi:10.1007/s12243-008-0052-3
  • J. Haerri, F. Filali and C. Bonnet, "Mobility Models for Vehicular Ad Hoc Networks: A Survey and Taxonomy", IEEE Communications Surveys & Tutorials, vol. 11, no. 4, pp 19-41, 2009.
  • S. Krauss, Microscopic modeling of traffic flow: investigation of collision free vehicle dynamics, PhD Thesis, Mathematisches Institut, Universiät zu Köln, 1998, http://www.zaik.uni-koeln.de/~paper/index.html?show=zpr98-319.

Abstract Views: 204

PDF Views: 1




  • Connectivity Based Positioning System for Underground Vehicular Ad Hoc Networks

Abstract Views: 204  |  PDF Views: 1

Authors

Salah Abdel Mageid
Systems and Computers Department, Al-Azhar University, Cairo, Egypt

Abstract


Underground vehicular ad-hoc networks are indorsing wireless networks because they can realize many goals such as improving the driving safety and monitoring the emergency alerts in underground environments (i.e., road tunnels). It is necessary for vehicular nodes to recognize their positions to achieve these goals. However, Global Positioning System (GPS) devices cannot operate in underground environments; furthermore, the signal propagation faces many effects such as attenuation, multipath and shadow fading. Traditional distance measurement techniques are inadequate to estimate vehicular node locations in underground environments because the expected measurement errors lead to poor positioning. In this paper, the network connectivity is exploited to estimate vehicular node positions instead of radio ranging methods. This work investigates one of the most important techniques that are based on the network connectivity (i.e., Monte Carlo) and proposes new heuristics that achieve an appropriate position estimation accuracy for vehicular nodes. As the underlying method is predictable, it enables these nodes to know their positions all the time inside underground environments. In addition, an efficient deployment strategy is proposed in this work to well organize reference nodes (i.e., fixed nodes that their positions are preconfigured) inside a road tunnel. The proposed scheme performance is verified by NS2 simulator and compared with the current Monte Carlo localization schemes where the simulation results indicate the superiority of the proposed scheme.

Keywords


Underground VANET, Road Tunnels, Positioning, Network Connectivity, Monte Carlo Localization.

References