Open Access Open Access  Restricted Access Subscription Access

Temperature Dependent Thermal Properties in Single-Wall Carbon Nano Tubes Based on Phonon Scattering


Affiliations
1 Dept. of Applied Physics, Electronics & Communication Engineering, Dhaka University, Bangladesh
 

Electronic devices and integrated systems are reduced to the size of micron and nanometer level and it becomes particularly important to predict the thermal transport properties of the components. Because of a unique structure and novel properties of carbon nanotubes (CNTs) have attracted significant attention. In this article, thermal transport properties of single wall CNTs (SWCNTs) are introduced. Combining equilibrium and nonequilibrium molecular dynamics with carbon potentials, we have studied the thermal conductivity of carbon nanotubes and its dependence on temperature. Phonon conduction depends on band gaps as well as thermal contact resistance of metallic CNTs, governed by phonon scattering and it shows evidence of 1-D quantization of the phonon band structure. We have studied here the thermal conductivity of single wall nanotubes dependence on chirality structure, dimensions of tubes, defects and vacancies in tubes. We found that the single wall carbon nanotubes have very high thermal conductivity comparable to diamond crystal and in-plane graphite sheet.

Keywords

Thermal Transport, Phonon, Green-Kubo Method, Quantization, Umklapp Scattering, Wiedemann-Franz Law
User
Notifications
Font Size


Abstract Views: 409

PDF Views: 232




  • Temperature Dependent Thermal Properties in Single-Wall Carbon Nano Tubes Based on Phonon Scattering

Abstract Views: 409  |  PDF Views: 232

Authors

Alamgir Kabir
Dept. of Applied Physics, Electronics & Communication Engineering, Dhaka University, Bangladesh
Rumelia Murshed
Dept. of Applied Physics, Electronics & Communication Engineering, Dhaka University, Bangladesh
Ummul Husnaeen
Dept. of Applied Physics, Electronics & Communication Engineering, Dhaka University, Bangladesh
Zahid Hasan Mahmood
Dept. of Applied Physics, Electronics & Communication Engineering, Dhaka University, Bangladesh

Abstract


Electronic devices and integrated systems are reduced to the size of micron and nanometer level and it becomes particularly important to predict the thermal transport properties of the components. Because of a unique structure and novel properties of carbon nanotubes (CNTs) have attracted significant attention. In this article, thermal transport properties of single wall CNTs (SWCNTs) are introduced. Combining equilibrium and nonequilibrium molecular dynamics with carbon potentials, we have studied the thermal conductivity of carbon nanotubes and its dependence on temperature. Phonon conduction depends on band gaps as well as thermal contact resistance of metallic CNTs, governed by phonon scattering and it shows evidence of 1-D quantization of the phonon band structure. We have studied here the thermal conductivity of single wall nanotubes dependence on chirality structure, dimensions of tubes, defects and vacancies in tubes. We found that the single wall carbon nanotubes have very high thermal conductivity comparable to diamond crystal and in-plane graphite sheet.

Keywords


Thermal Transport, Phonon, Green-Kubo Method, Quantization, Umklapp Scattering, Wiedemann-Franz Law