Open Access Open Access  Restricted Access Subscription Access

A Comparative Account of Terrestrial and Satellite Based Potential Field Data for Regional Tectonic/Structural Interpretation and Crustal Scale Modeling With Reference to the Indian Region


Affiliations
1 Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
 

In the recent past, several global geopotential models (GGM) were made available in the public domain but all these models have variable spatial resolution which is not always readily apparent on visual inspection. In the present study, evolution tests based on the statistical estimates, spectral analysis and Image enhancement filters have been performed to assess the spatial resolution and quality of Earth Gravitational models (EGM2008, GOCE, DTU13 and SSV23.1) and crustal magnetic field model (EMAG2) over the Indian shield and its surrounding offshore regions. Our study reveals that EGM2008 and satellite altimetry (DTU13 and SSV23.1) derived gravity models provide remarkable accuracies and wavelength resolutions (<19 km for EGM 2008; <4 km for DTU13 and SSV23.1) equal to the terrestrial (ground/shipboard gravity) measurements in the continental and oceanic regions respectively. It is also evident from both 2-d forward modeling and spectral analysis that the accuracy of GOCE derived global gravity models lies at longer wavelengths (i.e.,>125 km) which is useful for the delineating the subsurface density heterogeneities and deep crustal features such as suture/contact zones. Further image enhancement interpretation of these global geopotential models resolve the major structural trends, and provide new information on the crustal architecture.

Keywords

Global Potential Models, EGM08, GOCE, EMAG2, Satellite Altimetry, India Shield, Spectral Analysis, Image Enhancement Filters.
User
Notifications
Font Size

  • Maus, S., Barckhausen, U., Berkenbosch, H., Bournas, N., Brozena, J., Childers, V., Dostaler, F., Fairhead, J.D., Finn, C., von Frese, R.R.B., Gaina, C., Golynsky, S., Kucks, R., Luhr, H., Milligan, P., Mogren, S., Muller, R.D., Olesen, O., Pilkington, M., Saltus, R., Schreckenberger, B., Thebaulte., CaratoriTontini, F., 2009. EMAG2: A 2-arc-minute resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne and marine magnetic measurements. Geochem. Geophy. Geosyst. 10, Q08005, doi:10.1029/2009GC0 02471.
  • Pail, R., Bruinsma, S., Migliaccio, F., Förste, Ch., Goiginger, H., Schuh, W-D., Höck, E., Reguzzoni, M., Brockmann, J.M., Abrikosov, O., Veicherts, M., Fecher, T., Mayrhofer, R., Krasbutter, I., Sansò, F., Tscherning, C.C., 2011. First GOCE gravity field models derived by three different approaches. J Geodesy 85, 819-843.
  • Andersen, O.B., Knudsen, P., Kenyon, S., Factor, J.K., Holmes, S., 2013. The DTU13 global marine gravity field-first evolution. Ocean surface topography science team (OSTST) meeting. October, 8-11, Boulder, Colorado.
  • Sandwell, D.T., Müller, R.D., Smith, W. H. F.,Garcia, E., Francis, R., 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346, 65-67, DOI: 10.1126/science.1258213.
  • Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. 117(B04406), doi: 10.1029/2011JB008916.
  • Small, C., Sandwell, D.T., 1992. A comparison of satellite and ship borne gravity measurments in the Gulf of Mexico. Geophysics 57, 885-893.
  • Yale, M. M., Sandwell, D. T. 1999. Stacked global satellite gravity profiles. Geophysics, 64 (6), 1748-1755.
  • Eyike, A., Werner, S.C., Ebbing, J., Dicoum, E.M., 2010. On the use of global potential field models for regional interpretation of the West and Central African Rift System. Tectonophysics 492, 25-39.
  • Kother, N., Gotze, H.J., Gutknecht, B.D., Jahr, T., Jentzsch, G., Lucke, O.H., Mahatsente, R., Sharma, R. & Zeumann, S., 2012. The seismically active Andean and Central American margins: Can satellite gravity map lithospheric structures? J. Geodynamics, 59-60, 207-218.
  • Bomfim, E.P., Braitenberg, C., Molina, E.C., 2013. Mutual evaluation of globalgravity models (EGM2008 and GOCE) and terrestrial data in Amazon Basin, Brazil. Geophys. J. Int. 195 (2), 870-882.
  • Sandwell, D. T., Garcia, E., Soofi, K., Wessel, P., Chandler, M., Smith, W. H. F., 2013. Towards 1-mGal accuracy in global marine gravity from Cryosat-2, Envisat and Jason-1, The Leading edge, SEG, Houston, August, 2013, 892-898.
  • Godah, W., Krynski, J., 2015. Comparison of GGMs based on one year GOCE observations with theEGM08 and terrestrial data over the area of Sudan. Int. J. Appl. Earth Obs. Geoinf. 35, 128-135.
  • Amante, C., Eakins, B.W., 2009. ETOPO1 Global Relief Model converted to Pan Map layer format. NOAA-National Geophysical Data Center, doi:10.1594/PANGAEA.769615.
  • NGRI, 1978. Gravity map of India, Scale 1:5 Million, Hyderabad, India.
  • Chandrasekhar, D. V., Mishra, D. C., Rao, G. V. S., P., Rao, J.M., 2002. Gravity and magnetic signatures of volcanic plugs related to Deccan volcanism in Saurashtra, India and their physical and geochemical properties, Earth Planet. Sci. Lett., 201, 277-292.
  • Venkata Raju, D.Ch., R.S. Rajesh, R.S., Mishra, D.C., 2003. Bouguer anomaly of the Godavari basin, India and magnetic characteristics of rocks along its coastal margin and continental shelf. J. Asian Earth Sci. 21, 535-541.
  • Sunil, P.S., Radhakrishna, M., Kurian, P.J., Murty, B.V.S.,, Subrahmanyam, C.,, Nambiar, C.G., Arts, K.P.,, Arun, S.K., Mohan, S.K., 2010. Crustal structure of the western part of the Southern Granulite Terrain of Indian Peninsular Shield derived from gravity data. J. Asian Earth Sci. 39, 551-564.
  • Mishra, D.C., Gupta, S.B., Rao, M.B.S.V., Venkataryudu, M., Laxman, G., 1987. Godavari Basin-a geophysical study. J. Geol. Soc. India 30, 469-476.
  • Alvarez, O., Gimenez, M., Braitenberg, C., Folguera, A., 2012. GOCE satellite derivedgravity and gravity gradient corrected for topographic effect in the South Central Andes Region. Geophys. J. Int. 190, 941-959.
  • Spector, A., Grant, F.S., 1970. Statistical models for interpreting Aeromagnetic data. Geophysics 35 (2), 293-302.
  • Braitenberg, C. 2015. Exploration of tectonic structures with GOCE in Africa and across-continents. Int. J. Appl. Earth Obs. Geoinf 35, 88-95.
  • Ray, D.K., 1963. Tectonic Map of India, 1:2,000,000. Geol. Soc. India, Calcutta.
  • Fuloria, R.C., Pandey, R.N., Bharali, B.R., Mishra, J.K., 1992. Stratigraphy, Structure and Tectonics of Mahanadi offshore Basin. In: Recent Geoscientific studies in the Bay of Bengal and the Andaman Sea. J. Geol. Soc. India Special Publication 29, 255-265.
  • GSI, 2000. Seismotectonic Atlas of India and its environs. Geological Survey of India, Bangalore.
  • Lal, N.K., Siawal, A., Anil, K.K., 2009. Evolution of East Coast of India e a plate tectonic reconstruction. J. Geol. Soc. India 73.249-260.
  • Murthy, K.S.R., Subrahmanyam, V., Subrahmanyam, A.S., Murty, G.P.S., Sarma, K.V.L.N.S., 2010. Land-ocean tectonics (LOTs) and the associated seismic hazard over the Eastern Continental Margin of India (ECMI). Natural Hazards 55, 167-175.
  • Nemcok, M., Sinha, S.T., Stuart, C.J., Welker, C., Choudhuri, M., Sharma, S.P., Misra, A.A., Sinha, N., Venkatraman, S., 2012. East Indian margin evolution and crustal architecture: integration of deep reflection seismic interpretation and gravity modeling. In: Geol. Soc. Of London, Special Publications. doi:10.1144/SP369.6.
  • Radhakrishna, M., Twinkle, D., Nayak, S., Bastia, R., Rao, G.S., 2012. Crustal structure and rift architecture across the Krishna-Godavari basin in the central Eastern Continental Margin of India based on analysis of gravity and seismic data. Mar. Pet. Geol. 37,129-146.
  • Rao, G.S., Radhakrishna, M., Murthy, K.S.R., 2015. A Seismotectonic study of the 21 May 2014 Bay of Bengal Intraplate Earthquake: Evidence of onshore-offshore Tectonic Linkage and Fracture Zone Reactivation in the Northern Bay of Bengal. Natural Hazards, 78 (2), 895-913.
  • Roest, W., Verhoef, J., Pilkington, M., 1992. Magnetic interpretation using the 3-D analytic signal. Geophysics 57, 116-125.
  • Ebbing, J., Bouman, J., Fuchs, M., Gradmann, S., and Haagmans, R., 2014. Sensitivity of GOCE gravity gradients to crustal thickness and density variations: Case study for the Northeast Atlantic Region. In Gravity, Geoid and Height Systems, International Association of Geodesy Symposia, Vol. 141 (ed Marti, U.), 291–298, doi: 10.1007/978-3-319-10837-7_37 Springer.
  • Kaila, K.L., Chowdhury, R.K., Reddy, P.R., Krishna, V.G., Hari Narain, Subbotin, S.I., Sollogulb, V.B., Chekunov, A.V., Kharetchko, G.E., Lazarenko, M.A., Ilchenko, T.V., 1979. Crustal structure along the Kavali-Udipi profile in the Indian Peninsular Shield from Deep Seismic Sounding. J. Geol. Soc. India 20, 307-333.
  • Todal, A., Eldholm, O., 1998, Continental margin off western India and Deccan Large Igneous Province, Mar. Geophys. Res. 20, 273-291.
  • Gopala Rao, D., Krishna, K.S., Sar, D., 1997. Crustal evolution and sedimentation history of the Bay of Bengal since the Cretaceous, J. geoph ys.Res., 102, 17747-17768.
  • Singh, A.P., Mishra, D.C., Gupta, S.B., Rao, M.R.K.P., 2004. Crustal structure and domain tectonics of the Dharwar Craton (India): insight from new gravity data. J. Asian Earth Sci. 23, 141-152.
  • Saikia, U., Rai, S.S., Meena, R., Prasad, B.N.V., Borah, K., 2016. Moho offsets beneath the Western Ghat and the contact of Archean crusts of Dharwar Craton, India. Tectonophysics 672-673, 177-189.
  • Naini, B. R.,Talwani, M., 1982, Structural framework and evolutionary history of the continental margin of western India, In: Watkins, J. S. and Drake, C. L. (eds) Studies in continental margin geology Am. Assoc. Pet. Geol. Mem. 34, 167-191.
  • Calves, G., Schwab, A.M., Huuse, M., Clift, P.D., Gaina, C., Jolley, D., Tabrez, A.R., Inam, A., 2011. Seismic volcanostratigraphy of the western Indian rifted margin: the pre-Deccan igneous province. J. Geophys. Res. 116, B01101. http://dx.doi.org/ 10.1029/2010JB000862.
  • Kalra, R., Srinivasa Rao, G., Fainstein, R., Radhakrishna, M., Bastia, R., Chandrasekhar, S., 2014. Crustal architecture and tectono-magmatic history of the western offshore of India: Implications on deepwater sub-basalt hydrocarbon exploration. J. Pet. Sci. Eng. 122, 149-158.

Abstract Views: 545

PDF Views: 308




  • A Comparative Account of Terrestrial and Satellite Based Potential Field Data for Regional Tectonic/Structural Interpretation and Crustal Scale Modeling With Reference to the Indian Region

Abstract Views: 545  |  PDF Views: 308

Authors

G. Srinivasa Rao
Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
M. Radhakrishna
Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India

Abstract


In the recent past, several global geopotential models (GGM) were made available in the public domain but all these models have variable spatial resolution which is not always readily apparent on visual inspection. In the present study, evolution tests based on the statistical estimates, spectral analysis and Image enhancement filters have been performed to assess the spatial resolution and quality of Earth Gravitational models (EGM2008, GOCE, DTU13 and SSV23.1) and crustal magnetic field model (EMAG2) over the Indian shield and its surrounding offshore regions. Our study reveals that EGM2008 and satellite altimetry (DTU13 and SSV23.1) derived gravity models provide remarkable accuracies and wavelength resolutions (<19 km for EGM 2008; <4 km for DTU13 and SSV23.1) equal to the terrestrial (ground/shipboard gravity) measurements in the continental and oceanic regions respectively. It is also evident from both 2-d forward modeling and spectral analysis that the accuracy of GOCE derived global gravity models lies at longer wavelengths (i.e.,>125 km) which is useful for the delineating the subsurface density heterogeneities and deep crustal features such as suture/contact zones. Further image enhancement interpretation of these global geopotential models resolve the major structural trends, and provide new information on the crustal architecture.

Keywords


Global Potential Models, EGM08, GOCE, EMAG2, Satellite Altimetry, India Shield, Spectral Analysis, Image Enhancement Filters.

References