Open Access Open Access  Restricted Access Subscription Access

Diversity and Activity of Methanotrophic Related Bacteria in Subsurface Sediments of the Krishna-Godavari Basin, India


Affiliations
1 Aqua-Geomicrobiology Laboratory, CSIR-National Institute of Oceanography, Dona Paula 403 004, India
 

The present study assesses the distribution, diversity and activity of aerobic methanotrophic related bacteria (MRB) dwelling in Krishna-Godavari (KG) basin, India. The counts of MRB ranged from non-detectable (ND) to 8.6 × 104 CFU gram dry weight of the sediment, with maximum counts at 24.2 m below seafloor. Greater methanotrophic bacterial abundance was at the surface/subsurface sediments of the core at station MD161-8 than at the bottom sediments. Identification of these isolates by 16S rDNA sequence analysis showed their taxonomic affiliation to Alcanivorax, Methylophaga, Marinobacter, Joostella, Methylobacterium, Desulfovibrio species and other uncultured bacterial clones. The isolates grew under optimum pH of 8, temperature of 28°C and salinity of 35, and on different carbon sources like yeast extract, D-glucose, ethanol and methanol. The addition of nitrogen sources like amino acids and yeast extract improved methanotrophic activity by the isolates. These results add to our understanding of MRB and their activity in modulating the emission of methane from gas hydraterich ecosystems like the KG basin.

Keywords

Gas Hydrates, Methanotrophs, River Basin, Subsurface Sediments.
User
Notifications
Font Size

  • Gonsalves, M.-J., Fernandes, C. E. G., Fernandes, S. O., Kirchman, D. L. and Loka Bharathi, P. A., Effects of composition of labile organic matter on biogenic production of methane in the coastal sediments of the Arabian Sea. Environ. Monit. Assess., 2011, 182, 385–395.
  • Jang, I., Lee, S., Hong, J.-H. and Kang, H., Methane oxidation rates in forest soils and their controlling variables: a review and a case study in Korea. Ecol. Res., 2006, 21, 849–854.
  • Kotelnikova, S., Microbial production and oxidation of methane in deep subsurface. Earth Sci. Rev., 2002, 58, 367–395.
  • Carini, S., Bano, N., LeCleir, G. and Joye, S. B., Aerobic methane oxidation and methanotroph community composition during seasonal stratification in Mono Lake, California (USA). Environ. Microbiol., 2005, 7, 1127–1138.
  • Rahalkar, M. and Schink, B., Comparison of aerobic methanotrophic communities in littoral and profundal sediments of Lake Constance by a molecular approach. Appl. Environ. Microbiol., 2007, 73, 4389–4394.
  • Perry, J. J. and Staley, J. T., Microbiology: Dynamics and Diversity, Saunders College Publishing, New York, 1997.
  • Murrell, J. C., McDonald, I. R. and Bourne, D. G., Molecular methods for the study of methanotroph ecology. FEMS. Microbiol. Ecol., 1998, 27, 103–114.
  • Hanson, R. S. and Hanson, T. E., Methanotrophic bacteria. Microbiol. Rev., 1996, 60, 439–471.
  • Islam, T., Jensen, S., Reigstad, L. J., Larsen, Ø. and Birkeland, N.-K., Methane oxidation at 55°C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc. Natl. Acad. Sci. USA, 2008, 105, 300–304.
  • Semrau, J. D., DiSpirito, A. A. and Vuilleumier, S., Facultative methanotrophy: false leads, true results, and suggestions for future research. FEMS Microbiol. Lett., 2011, 323, 1–12.
  • Reed, D. W., Fujita, Y., Delwiche, M. E., Blackwelder, D. B., Sheridan, P. P., Uchida, T. and Colwell, F. S., Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Appl. Environ. Microbiol., 2002, 68, 3759–3770.
  • Mazumdar, A., João, H. M., Peketi, A., Dewangan, P., Kocherla, M., Joshi, R. K. and Ramprasad, T., Geochemical and geological constraints on the composition of marine sediment pore fluid: Possible link to gas hydrate deposits. Mar. Pet. Geol., 2012, 38, 35–52.
  • Hobbie, J. E., Daley, R. J. and Jasper, S., Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol., 1977, 33, 1225–1228.
  • Whittenbury, R., Phillip, K. C. and Wilkinson, J. F., Enrichment, isolation and some properties of methane utilizing bacteria. J. Gen. Microbiol., 1970, 61, 205–218.
  • Gerhardt, P., Murray, R. G. E., Costilow, R. N., Nester, E. W., Wood, W. A., Krieg, N. R. and Phillips, G. B., Manual of Methods for General Bacteriology, American Society for Microbiology, Washington, DC, 1981.
  • Dianou, D. and Adachi, K., Characterization of methanotrophic bacteria isolated from a subtropical paddy field. FEMS Microbiol. Lett., 1999, 173, 163–173.
  • Zeng, L. et al., An effective method of DNA extraction for bioleaching bacteria from acid mine drainage. Appl. Microbiol. Biotechnol., 2008, 79, 881–888.
  • Marchesi, J. R., Sato, T., Weightman, A. J., Martin, T. A., Fry, J. C., Hiom, S. J. and Wade, W. G., Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol., 1998, 64, 795– 799.
  • Krishnamurthi, S., Bhattacharya, A., Mayilraj, S., Saha, P., Schumann, P. and Chakrabarti, T., Description of Paenisporosarcina quisquiliarum gen. nov., sp. nov., and reclassification of Sporosarcina macmurdoensis Reddy et al. (2003) as Paenisporosarcina macmurdoensis comb. nov. Int. J. Syst. Evol. Microbiol., 2009, 59, 1364–1370.
  • Sujith, P. P., Mourya, B. S., Krishnamurthi, S., Meena, R. M. and Loka Bharathi, P. A., Mobilization of manganese by basalt associated Mn(II) oxidizing bacteria from the Indian Ridge System. Chemosphere, 2014, 95, 486–495.
  • Macy, J. M., Snellen, J. E. and Hungate, R. E., Use of syringe methods for anaerobiosis. Am. J. Clin. Nutr., 1972, 25, 1318–1323.
  • Parkes, R. J., Sass, H., Webster, G., Watkins, A. J., Weightman, A. J., O’Sullivan, L. A. and Cragg, B. A., Methods for studying methanogens and methanogenesis in marine sediments. In Handbook of Hydrocarbon and Lipid Microbiology (ed. Timmis, K. N.), Springer-Verlag, Berlin, 2010, pp. 3799–3826.
  • Aken, B. V., Peres, C. M., Doty, S. L., Yoon, J. M. and Schnoor, J. L., Methylobacterium populi sp. nov., a novel aerobic, pinkpigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoidesnigra DN34). Int. J. Syst. Evol. Microbiol., 2004, 54, 1191–1196.
  • Chistoserdova, L., Kalyuzhnaya, M. G. and Lidstrom, M. E., The expanding world of methylotrophic metabolism. Annu. Rev. Microbiol., 2009, 63, 477–499.
  • Jugnia, L. B., Roy, R., Pacheco-Oliver, M. C., Miguez, C. B. and Greer, C. W., Production and consumption of methane in soil, peat and sediments from a hydro-electric reservoir (Robert-Bourassa) and lakes in the Canadian Taiga. In Greenhouse Gas Emissions – Fluxes and Processes: Hydroelectric Reservoirs and Natural Environments (eds Tremblay, A. et al.), Springer-Verlag, Berlin, 2005, pp. 441–466.
  • Inagaki, F. et al., Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc. Natl. Acad. Sci. USA, 2006, 103, 2815–2820.
  • Trotsenko, Yu. A., Doronina, N. V., Li, Ts. D. and Reshetnikov, A. S., Moderately haloalkaliphilic aerobic methylobacteria. Microbiology, 2007, 76, 293–305.
  • Aslam, Z., Lee, C. S., Kim, K. H., Im, W. T., Ten, L. N. and Lee, S. T., Methylobacterium jeotgali sp. nov., a nonpigmented, facultatively methylotrophic bacterium isolated from jeotgal, a traditional Korean fermented seafood. Int. J. Syst. Evol. Microbiol., 2007, 57, 566–571.
  • Janvier, M., Frehel, C., Grimont, F. and Gasser, F., Methylophaga marina gen. nov., sp. nov. and Methylophaga thalassica sp. nov., marine methylotrophs. Int. J. Syst. Bacteriol., 1985, 35, 131–139.
  • Neufeld, J. D., Schafer, H., Cox, M. J., Boden, R., McDonald, I. R. and Murrell, J. C., Stable-isotope probing implicates Methylophaga spp. and novel Gammaproteobacteria in marine methanol and methylamine metabolism. ISME J., 2007, 1, 480–491.
  • Sabirova, J. S., Ferrer, M., Regenhardt, D., Timmis, K. N. and Golyshin, P. N., Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization. J. Bacteriol., 2006, 188, 3763–3773.
  • Hara, A., Baik, S. H., Syutsubo, K., Misawa, N., Smits, T. H., van Beilen, J. B. and Harayama, S., Cloning and functional analysis of alkB genes in Alcanivorax borkumensis SK2. Environ. Microbiol., 2004, 6, 191–197.
  • Xuezheng, L., Aiguo, G. and Haowen, C., Isolation and phylogenetic analysis of cultivable manganese bacteria in sediments from the Arctic Ocean. Acta Ecol. Sin., 2008, 28, 6364–6370.
  • Nakano, M., Okunishi, S., Tanaka, R. and Maeda, H., Denitrifying activity and homologous enzyme analysis of Alcanivorax dieselolei strain N1203. Biocontrol. Sci., 2009, 14, 97–105.
  • Beal, E. J., House, C. H. and Orphan, V. J., Manganese- and irondependent marine methane oxidation. Science, 2009, 325, 184– 187.
  • Ettwig, K. F. et al., Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 2010, 464, 543–548.
  • Kaye, J. Z., Sylvan, J. B., Edwards, K. J. and Baross, J. A., Halomonas and Marinobacter ecotypes from hydrothermal vent, subseafloor and deep-sea environments. FEMS Microbiol. Ecol., 2011, 75, 123–133.
  • Gauthier, M. J., Lafay, B., Christen, R., Fernandez, L., Acquaviva, M., Bonin, P. and Bertrand, J. C., Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon degrading marine bacterium. Int. J. Syst. Bacteriol., 1992, 42, 568–576.
  • Handley, K. M., Héry, M. and Lloyd, J. R., Redox cycling of arsenic by the hydrothermal marine bacterium Marinobacter santoriniensis. Environ. Microbiol., 2009, 11, 1601–1611.
  • Merkx, M., Kopp, D. A., Sazinsky, M. H., Blazyk, J. L., Müller, J. and Lippard, S. J., Dioxygen activation and methane hydroxylation by soluble methane monooxygenase: a tale of two irons and three proteins. Angew. Chem., Int. Ed. Engl., 2001, 40, 2782– 2807.
  • Hou, S. et al., Genome sequence of the deep-sea γ-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy. Proc. Natl. Acad. Sci. USA, 2004, 101, 18036–18041.
  • Sorokin, X., On the ability of sulfate-reducing bacteria to utilize methane for the reduction of sulfate. Dokl. Akad. Nauk. SSSR, Ser. Biol., 1957, 115, 816–818.
  • Davis, J. B. and Yarbrough, H. F., Anaerobic oxidation of hydrocarbons by Desulfovibrio desulfuricans. Chem. Geol., 1966, 1, 137–144.
  • Iversen, N., Interaktioner mellem fermenteringsprocesser og de terminale processer. Ph D thesis, Aarhus University, Denmark, 1984.
  • Stams, A. J. M., Hansen, T. A. and Skyring, G. W., Utilization of amino acids as energy substrates by two marine Desulfovibrio strains. FEMS Microbiol. Lett., 1985, 31, 11–15.
  • Coleman, M. L., Hedrick, D. B., Lovley, D. R., White, D. C. and Pye, K., Reduction of Fe(III) in sediments by sulfate-reducing bacteria. Nature, 1993, 361, 436–438.
  • Krieg, N. R. et al., Bergey’s Manual of Systematic Bacteriology, Springer, New York, 2010, 2nd edn.
  • Quan, Z. X. et al., Joostella marina gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from the East Sea. Int. J. Syst. Evol. Microbiol., 2008, 58, 1388–1392.

Abstract Views: 254

PDF Views: 88




  • Diversity and Activity of Methanotrophic Related Bacteria in Subsurface Sediments of the Krishna-Godavari Basin, India

Abstract Views: 254  |  PDF Views: 88

Authors

P. P. Sujith
Aqua-Geomicrobiology Laboratory, CSIR-National Institute of Oceanography, Dona Paula 403 004, India
V. Miriam Sheba
Aqua-Geomicrobiology Laboratory, CSIR-National Institute of Oceanography, Dona Paula 403 004, India
Maria Judith B. D. Gonsalves
Aqua-Geomicrobiology Laboratory, CSIR-National Institute of Oceanography, Dona Paula 403 004, India

Abstract


The present study assesses the distribution, diversity and activity of aerobic methanotrophic related bacteria (MRB) dwelling in Krishna-Godavari (KG) basin, India. The counts of MRB ranged from non-detectable (ND) to 8.6 × 104 CFU gram dry weight of the sediment, with maximum counts at 24.2 m below seafloor. Greater methanotrophic bacterial abundance was at the surface/subsurface sediments of the core at station MD161-8 than at the bottom sediments. Identification of these isolates by 16S rDNA sequence analysis showed their taxonomic affiliation to Alcanivorax, Methylophaga, Marinobacter, Joostella, Methylobacterium, Desulfovibrio species and other uncultured bacterial clones. The isolates grew under optimum pH of 8, temperature of 28°C and salinity of 35, and on different carbon sources like yeast extract, D-glucose, ethanol and methanol. The addition of nitrogen sources like amino acids and yeast extract improved methanotrophic activity by the isolates. These results add to our understanding of MRB and their activity in modulating the emission of methane from gas hydraterich ecosystems like the KG basin.

Keywords


Gas Hydrates, Methanotrophs, River Basin, Subsurface Sediments.

References





DOI: https://doi.org/10.18520/cs%2Fv110%2Fi9%2F1801-1809