Open Access Open Access  Restricted Access Subscription Access

Growth, biomass and carbon sequestration of fast-growing tree species under high-density plantation in Prayagraj, Uttar Pradesh, India


Affiliations
1 Forest Research Center for Eco-Rehabilitation, Prayagraj 211 002, India
 

We studied the growth performance of fast-growing trees, viz. Eucalyptus spp., Casuarina equisetifolia, Gmelina arborea and Melia dubia in high-density plantation in Prayagraj, Uttar Pradesh, India, with different spacings, viz. 1×1 m, 1.2×1.2 m and 1.5×1.5 m. The experiment was established in July 2019 and data were recorded for the first and second year. In the second year maximum height increment was found in T1 (Eucalyptus 1×1 m; 3.42 m) followed by T5 (Eucalyptus 1.2×1.2 m; 3.40 m) and minimum in T2 (Casuarina 1×1 m; 1.39 m), whereas maximum girth increment was found in T1 (Eucalyptus 1×1 m; 12.43 cm) follo­wed by T9 (Eucalyptus 1.5×1.5 m; 10.66 cm) and minimum in T6 (Casuarina 1.2×1.2 m; 6.46 cm). Maximum biomass in the first year was found in T6 (Casuarina 1.2×1.2 m; 15.51 t ha–1), followed by T1 (Eucalyptus 1×1 m; 14.71 t ha–1) and minimum in T12 (Melia 1.5×1.5 m; 0.66 t ha–1), whereas in the second year maximum biomass was found in T1 (Eucalyptus 1×1 m; 202.72 t ha–1), followed by T5 (Eucalyptus 1.2×1.2 m; 98.81 t ha–1) and minimum in T12 (Melia 1.5×1.5 m; 17.34 t ha–1). Carbon stock and carbon sequestration were maximum in the first year in T6 (Casuarina 1.2×1.2 m) followed by T1 (Eucalyptus 1×1 m) and minimum in Melia (1.5×1.5 m), with values of 7.75, 7.35, 0.33 t ha–1, and 28.42, 26.96, 1.21 t ha–1 respectively. Whereas in the second year maximum was found in T1 (Eucalyptus 1×1 m) follo­wed by T5 (Eucalyptus 1.2×1.2 m) and minimum in T12 (Melia 1.5×1.5 m), with values of 101.36, 49.41, 8.67 t ha–1, and 371.59, 181.12 and 31.78 t ha–1 respectively. Maximum productivity was found in T1 (Eucalyptus 1×1 m; 188.01 t ha–1) followed by T5 (Eucalyptus 1.2×1.2 m; 89.88 t ha–1) and minimum in T12 (Melia 1.5×1.5 m; 16.68 t ha–1).

Keywords

Biomass, carbon sequestration, fast-growing trees, high-density plantation.
User
Notifications
Font Size

  • Palsaniya, D. R., Dhyani, S. K., Tewari, R. K., Singh, R. and Yadav, R. S., Marketing issues and constraints in agroforestry. In Agroforestry: Natural Resource Sustainable, Livelihood and Climate Moderation (eds Chaturvedi, O. P. et al.), Satish Series Serial Publication House, Delhi, 2009, pp. 563–577.
  • Hiloidhari, M., Medhi, H., Das, K., Thakur, S. I. and Baruah, C. D., Bioenergy and carbon sequestration potential from energy tree plantation in rural wasteland of North-Eastern India. JEES, 2016, 2, 13–18.
  • Kojima, M. et al., Effect of the lateral growth rate on wood properties in fast-growing hardwood species. J. Wood Sci., 2009, 55, 417–424.
  • Bauhus, J., Van der Meer, P. and Kanninen, M., Ecosystem goods and services from plantation forests. Earthscan, London, 2010.
  • Singh, A. K., Pandey, V. N. and Misra, K. N., Stand composition and phytomass distribution of a tropical deciduous teak (Tectona grandis) plantation of India. J. Jpn. For. Soc., 1980, 62(4), 128– 137.
  • Corona, P., Forestry research to support the transition towards a bio-based economy. Ann. Silvicul. Res., 2014, 38(2), 37–38.
  • Bonnich, T. and Belyazid, S., The route to sustainability prospects and challenges of the bio-based economy. Sustainability, 2017, 9, 887; doi:10.3390/su9060887.
  • Tenorio, C., Moya, R., Tomazello, F. M. and Valaert, J., Quality of pellets made from agricultural and forestry crops in Costa Rican tropical climates. Bioresourses, 2015, 10(1), 482–498.
  • Costa, P. M., Tropical forestry practices for carbon sequestration – review and case study from SE Asia. Ambio, 1996, 25, 279–283.
  • Bohre, P., Chaaubey, O. P. and Singhal, P. K., Biomass accumulation and carbon sequestration in Tectona grandis Linn. f. and Gmelina arborea Roxb. Int. J. Biosci. Biotechnol., 2013, 5(3), 153–174.
  • Brown, S. and Lugo, E. A., Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon. Jaterciercia, 1992, 17(1), 8–18.
  • Intergovernmental Panel on Climate Change, Climate Change 2001: Impacts, Adaptation and Vulnerability, IPCC, Cambridge University Press, Cambridge, UK, 2001.
  • IPCC, Land use change and forestry. In Revised (1996). IPCC Guidelines for National Greenhouse Gas Inventories, Cambridge University Press, Cambridge, UK, 1996.
  • Nizami, S. M., Assessment of the carbon stocks in sub-tropical forests of Pakistan for reporting under Kyoto Protocol. J. For. Res., 2012, 23, 377–384.
  • Behera, K. M. and Mohapatra, P. N., Biomass accumulation and carbon stocks in 13 different clones of teak (Tectona grandis Linn. f.) in Odisha, India. Curr. World Environ., 2015, 10(3), 1011– 1016.
  • Behera, L. K., Patel, D. P., Gunaga, R. P., Mehta, A. A. and Jadeja, D. B., Clonal evaluation for early growth performance of Eucalyptus in South Gujarat, India. J. Appl. Nat. Sci., 2016, 8(4), 2066–2069; https://plu.mx/plum/a/?doi=10.31018/jans.v8i4.1088
  • Srivastav, A., Tomar, A. and Agarwal, Y. K., Performance of Eucalyptus clones in Trans-Ganga region of Uttar Pradesh, India. Indian J. Agrofor., 2020, 22(1), 43–47.
  • Naugraiya, M. N. and Shaw, S. S., Gmelina arborea as highdensity plantation to reclaim the red lateritic wasteland lands of Chhattisgarh. J. Tree Sci., 2014, 33(1), 34–42.
  • Pal, M. and Raturi, D. P., Growth, biomass production and dry matter distribution pattern of Eucalyptus hybrid grown in an energy plantation. Indian For., 1991, 117, 187–192.
  • Patil, H. Y., Karatangi, K. G. and Mutanal, S. M., Growth and productivity of Melia dubia under different plant density. Int. J. For. Crop Improv., 2017, 8(1), 30–33; doi:10.15740/HAS/IJFCI/ 8.1/30-33.
  • Kushalappa, A. K., Productivity Studies in Mysore Gum Productivity (Eucalyptus hybrid), Associated Publishing Company, 1993, pp. 1–50.
  • Yadav, J. S. P., Soil limitations for successful establishment and growth of Casuarina plantation. In Casurina – Ecology, Management and Utilization, Proceedings of an International Workshop, Canberra, Australia, 1981, pp. 138–157.
  • Tandan, V. N., Rawat, J. K. and Singh, R., Biomass production and mineral cycling in plantation ecosystem of Eucalyptus hybrid in Haryana. Indian For., 1993, 119(3), 232–237.
  • Resquin, F., Cerrillo, N. M. R., Casnati, R. C., Hirigoyen, A., Letelier, C. L. and Lazo, D. J., Allometry, growth and survival of three Eucalyptus species (Eucalyptus benthamii Maiden and Cambage, E. dunnii Maiden and E. grandis Hill ex Maiden) in highdensity plantations in Uruguay. Forests, 2018, 9, 745; doi: 10.3390/f9120745.
  • Sadono, R., Wardhana, W., Wirabuana, P. Y. A. P. and Idris, F., Productivity evaluation of Eucalyptus urophylla plantation established in dryland ecosystems, East Nusa Tenggara. J. Degrad. Min. Lands Manage., 2020, 8(1), 2461–2469; doi:10.15243/jdmlm.2020.081.2461.
  • Nirmal, A. and Handa, A. K., Biomass and volume models for clonal Eucalyptus tereticornis coppice under agroforestry systems in central India. Indian J. Agrofor., 2021, 23(1), 54–60.
  • Toky, O. P., Riddell-Black, D., Harris, P. J. C., Vasudevan, P. and Davies, P. A., Biomass production in short rotation effluent-irrigated plantations in North-West India. J. Sci. Ind. Res., 2011, 70(8), 601–609; https://publications.aston.ac.uk/view/author/daviespa=40aston=2Eac=2Euk.html
  • Kushalapa, K. A., Comparative biomass of Acacia auriculiformis and Casuarina equisetifolia under different spacing. Van Vigyan, 1987, 25(3–4), 51–55.
  • Kumar, P., Mishra, K. A., Chaudhari, S. K., Sharma, D. K., Rai, A. K. and Singh, K., Carbon sequestration and soil carbon buildup under Eucalyptus plantation in semi-arid regions of north-west India. J. Sustain. For., 2021, 40(4), 319–331; https://doi.org/10.1080/10549811.2020.1749856.
  • Swamy, S. L. and Mishra, A., Comparison of biomass and C storage in three promising fast growing tree plantations under agroforestry system in sub-humid tropics of Chhattisgarh, India. Univ. J. Agric. Res., 2014, 2(8), 284–296; doi:10.13189/ujar.2014.020802.
  • Yasin, G., Nawaz, M. F., Siqqiqui, M. T. and Niazi, N. K., Biomass, carbon stocks and CO2 sequestration in three different aged irrigated Populus deltoides Bartr. ex Marsh. bund planting agroforestry systems. Appl. Ecol. Environ. Res., 2018, 16(5), 6239–6252.
  • Arora, G., Chaturvedi, S., Kaushal, R., Nain, A., Tewari, S., Alam, N. M. and Chaturvedi, O. P., Growth, biomass, carbon stocks, and sequestration in age series of Populus deltoides plantations in Tarai region of central Himalaya. Turk. J. Agric. For., 2014, 38, 550–560.
  • Singh, V. and Toky, O. P., Biomass and net primary productivity in Leucaena, Acacia and Eucalyptus, short rotation, high density (‘energy’) plantations in arid India. J. Arid Environ., 1995, 31(3), 301–309.
  • Bignell, C. M., Dumplop, P. J. and Bprphy, J. J., Volatile leaf oil of some south-eastern and South Australian species of genus Eucalyptus, subgenus Symphomutus. J. Flav. Frag., 1997, 12, 261–267.

Abstract Views: 179

PDF Views: 78




  • Growth, biomass and carbon sequestration of fast-growing tree species under high-density plantation in Prayagraj, Uttar Pradesh, India

Abstract Views: 179  |  PDF Views: 78

Authors

Bijay Kumar Singh
Forest Research Center for Eco-Rehabilitation, Prayagraj 211 002, India
Anita Tomar
Forest Research Center for Eco-Rehabilitation, Prayagraj 211 002, India
Faraz Ahmad Khan
Forest Research Center for Eco-Rehabilitation, Prayagraj 211 002, India
Kumari Beauty
Forest Research Center for Eco-Rehabilitation, Prayagraj 211 002, India

Abstract


We studied the growth performance of fast-growing trees, viz. Eucalyptus spp., Casuarina equisetifolia, Gmelina arborea and Melia dubia in high-density plantation in Prayagraj, Uttar Pradesh, India, with different spacings, viz. 1×1 m, 1.2×1.2 m and 1.5×1.5 m. The experiment was established in July 2019 and data were recorded for the first and second year. In the second year maximum height increment was found in T1 (Eucalyptus 1×1 m; 3.42 m) followed by T5 (Eucalyptus 1.2×1.2 m; 3.40 m) and minimum in T2 (Casuarina 1×1 m; 1.39 m), whereas maximum girth increment was found in T1 (Eucalyptus 1×1 m; 12.43 cm) follo­wed by T9 (Eucalyptus 1.5×1.5 m; 10.66 cm) and minimum in T6 (Casuarina 1.2×1.2 m; 6.46 cm). Maximum biomass in the first year was found in T6 (Casuarina 1.2×1.2 m; 15.51 t ha–1), followed by T1 (Eucalyptus 1×1 m; 14.71 t ha–1) and minimum in T12 (Melia 1.5×1.5 m; 0.66 t ha–1), whereas in the second year maximum biomass was found in T1 (Eucalyptus 1×1 m; 202.72 t ha–1), followed by T5 (Eucalyptus 1.2×1.2 m; 98.81 t ha–1) and minimum in T12 (Melia 1.5×1.5 m; 17.34 t ha–1). Carbon stock and carbon sequestration were maximum in the first year in T6 (Casuarina 1.2×1.2 m) followed by T1 (Eucalyptus 1×1 m) and minimum in Melia (1.5×1.5 m), with values of 7.75, 7.35, 0.33 t ha–1, and 28.42, 26.96, 1.21 t ha–1 respectively. Whereas in the second year maximum was found in T1 (Eucalyptus 1×1 m) follo­wed by T5 (Eucalyptus 1.2×1.2 m) and minimum in T12 (Melia 1.5×1.5 m), with values of 101.36, 49.41, 8.67 t ha–1, and 371.59, 181.12 and 31.78 t ha–1 respectively. Maximum productivity was found in T1 (Eucalyptus 1×1 m; 188.01 t ha–1) followed by T5 (Eucalyptus 1.2×1.2 m; 89.88 t ha–1) and minimum in T12 (Melia 1.5×1.5 m; 16.68 t ha–1).

Keywords


Biomass, carbon sequestration, fast-growing trees, high-density plantation.

References





DOI: https://doi.org/10.18520/cs%2Fv122%2Fi5%2F618-622