Open Access Open Access  Restricted Access Subscription Access

Response of Ambient BC Concentration Across the Indian Region to the Nation-Wide Lockdown: Results from the ARFINET Measurements of ISRO-GBP


Affiliations
1 Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, India
2 Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru 560 012, India
3 Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru 560 012, India
4 Centre for Atmospheric Studies, Dibrugarh University, Dibrugarh 786 004, India
5 Regional Remote Sensing Centre, Indian Space Research Organisation, Nagpur 440 033, India
6 North Eastern – Space Application Centres, Shillong 793 103, India
7 Department of Physics, Tripura University, Suryamaninagar, Agartala 799 022, India
8 Department of Marine Sciences, Goa University, Goa 403 206, India
9 National Remote Sensing Centre, Indian Space Research Organisation, Hyderabad 500 037, India
10 Indian Institute of Mineral and Materials Technology, Bhubaneswar 751 013, India
11 Sri Krishna Devaraya University, Anantapur 515 003, India
12 G. B. Pant Institute of Himalayan Environment and Development, Kullu 175 126, India
13 Tamil Nadu Agricultural University, Coimbatore 641 003, India
14 Aryabhatta Research Institute of Observational Sciences, Nainital 263 002, India
15 Department of Chemistry, Dayalbagh Educational Institute, Agra 282 005, India
16 Department of Physics, D.D.U. Gorakhpur University, Gorakhpur 273 009, India
17 Department of Chemical Engineering, IIT-BHU, Varanasi 221 005, India
18 Indian Institute of Remote Sensing, Indian Space Research Organisation, Dehradun 248 001, India
 

In this study, we assess the response of ambient aero-sol black carbon (BC) mass concentrations and spec-tral absorption properties across Indian mainland during the nation-wide lockdown (LD) in connection with the Coronavirus Disease 19 (COVID-19) pan-demic. The LD had brought near to total cut-off of emissions from industrial, traffic (road, railways, ma-rine and air) and energy sectors, though the domestic emissions remained fairly unaltered. This provided a unique opportunity to delineate the impact of fossil fuel combustion sources on atmospheric BC characte-ristics. In this context, the primary data of BC meas-ured at the national network of aerosol observatories (ARFINET) under ISRO-GBP are examined to assess the response to the seizure of emissions over distinct geographic parts of the country. Results indicate that average BC concentrations over the Indian mainland are curbed down significantly (10–40%) from pre-lockdown observations during the first and most in-tense phase of lockdown. This decline is significant with respect to the long-term (2015–2019) averaged (climatological mean) values. The drop in BC is most pronounced over the Indo-Gangetic Plain (>60%) and north-eastern India (>30%) during the second phase of lockdown, while significant reduction is seen during LD1 (16–60%) over central and peninsular Indian as well as Himalayan and sub-Himalayan regions. De-spite such a large reduction, the absolute magnitude of BC remained higher over the IGP and north-eastern sites compared to other parts of India. Notably, the spectral absorption index of aerosols changed very little over most of the locations, indicating the still persisting contribution of fossil-fuel emissions over most of the locations.

Keywords

ARFINET, Black Carbon, COVID-19.
User
Notifications
Font Size

  • Ramanathan, V. and Carmichael, G., Global and regional climate changes due to black carbon. Nat. Geosci., 2008, 1, 221–227.
  • Bond, T. C. et al., Bounding the role of black carbon in the cli-mate system: a scientific assessment. J. Geophys. Res. Atmos., 2013, 118, 5380–5552; doi:10.1002/jgrd.50171.
  • Gogoi, M. M. et al., Radiative effects of absorbing aerosols over north-eastern India: observations and model simulations. J. Ge-ophys. Res. Atmos., 2017, 122(2), 1132–1157; doi:10.1002/ 2016JD025592.
  • Li, G. L., Sun, L., Ho, K. F., Wong, K. C. and Ning, Z., Implica-tion of light absorption enhancement and mixing state of black carbon (BC) by coatings in Hong Kong. Aerosol Air Qual. Res., 2018, 18, 2753e2763.
  • Lack, D. A., Moosmüller, H., McMeeking, G. R., Chakrabarty, R. K. and Baumgardner, D., Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: a review of techniques, their limitations and uncertainties. Anal. Bioanal. Chem., 2014; doi:10.1007/s00216-013-7402-3.
  • Weingartner, E., Saathof, H., Schnaiter, M., Streit, N., Bitnar, B. and Baltensperger, U., Absorption of light by soot particles: determination of the absorption coefficient by means of Ae-thalometers. J. Aerosol Sci., 2003, 34, 1445–1463; doi:10.1016/S0021-8502(03)00359-8.
  • Drinovec, L. et al., The ‘dual-spot’ Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation. Atmos. Meas. Tech., 2015, 8, 1965–1979; doi: 10.5194/amt-8-1965-2015.
  • Moorthy, K. K., Babu, S. S., Sunilkumar, S. V., Gupta, P. K. and Gera, B. S., Altitude profiles of aerosol BC, derived from aircraft measurements over an inland urban location in India. Geophys. Res. Lett., 2004; doi:10.1029/2004GL021336. L1B2103.
  • Babu, S. S. et al., High altitude (~4520 m amsl) measurements of black carbon aerosols over western trans-Himalayas: seasonal heterogeneity and source apportionment. J. Geophys. Res. Atmos., 2011, 116(24), 1–15; doi:10.1029/2011JD016722.
  • Gogoi, M. M. et al., Physical and optical properties of aerosols in a free tropospheric environment: Results from long-term observa-tions over western trans-Himalayas. Atmos. Environ., 2014, 84, 262–274.
  • Arun, B. S., Aswini, A. R., Gogoi, M. M., Hegde, P., Kompalli, S. K., Sharma, P. and Babu, S. S., Physico-chemical and optical properties of aerosols at a background site (~4 km a.s.l.) in the western Himalayas. Atmos. Environ., 2019, doi:10.1016/j. atmosenv.2019.1170.
  • Lau, K. M., Kim, M. K. and Kim, K. M., Aerosol induced anoma-lies in the Asian summer monsoon – the role of the Tibetan Plat-eau. Clim. Dyn., 2006, 26, 855–864; doi:10.1007/s00382-006-0114-z.
  • Jain, S. and Sharma, T., Social and travel lockdown impact con-sidering coronavirus disease (COVID-19) on air quality in mega-cities of India: present benefits, future challenges and way for-ward. Aerosol Air Qual. Res., 2020; doi:10.4209/aaqr.2020. 04.0171.
  • Mahato, S., Pal, S. and Ghosh, K. G., Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ., 2020; doi:10.1016/j.scitotenv.2020.139086.
  • Sharma, S., Zhang, M., Anshika, Gao, J., Zhang, H. and Kota, S. H., Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ., 2020; doi:10.1016/j.scitotenv. 2020.138878.
  • Bao, R. and Zhang, A., Does lockdown reduce air pollution? Evi-dence from 44 cities in northern China. Sci. Total Environ., 2020; doi:10.1016/j.scitotenv.2020.139052.
  • Saadat, S., Rawtani, D. and Hussain, C. M., Environmental per-spective of COVID-19. Sci. Total Environ., 2020; doi:10.1016/ j.scitotenv.2020.138870.
  • Xu, K., Cui, K., Young, L. H., Hsieh, Y. K., Wang, Y. F., Zhang, J. and Wan, S., Impact of the COVID-19 event on air quality in central China. Aerosol Air Qual. Res., 2020, 20, 915–929; doi: 10.4209/aaqr.2020.04.0150.
  • Nakada, L. Y. K. and Urban, R. C., COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Sci. Total Environ., 2020, 730, 139087; doi:10.1016/ j.scitotenv.2020.139087.
  • Tobías, A. et al., Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ., 2020, 726, 138540; doi:10.1016/j.scitotenv. 2020.138540.
  • Otmani, A., Benchrif, A., Tahri, M., Bounakhla, M., Chakir, E. M., Bouch, M. E. and Krombi, M., Impact of COVID-19 lockdown on PM10, SO2 and NO2 concentrations in Salé City (Morocco). Sci. Total Environ., 2020; doi:10.1016/j.scitotenv. 2020.139541.
  • Monserrate, M. A. Z. and Ruano, M. A., Has air quality improved in Ecuador during the COVID-19 pandemic? A parametric analy-sis. Air Quality Atmos. Health, 2020; doi:10.1007/s11869-020-00866-y.
  • Bauwens, M. et al., Impact of coronavirus outbreak on NO2 pollu-tion assessed using TROPOMI and OMI observations. Geophys. Res. Lett., 2020; doi:10.1029/2020GL087978.
  • Sicard, P. et al., Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ., 2020; doi:10.1016/ j.scitotenv.2020.139542.
  • Schnaiter, M., Horvath, H., Mohler, O., Naumann, K.-H., Saatho, H. and Schock, O. W., UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols. J. Aerosol Sci., 2003, 34, 1421–1444.
  • Kirchstetter, T. W. and Novakov, T., Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res., 2004, 109, D21208; doi:10.1029/ 2004JD004999.
  • Clarke, A. et al., Biomass burning and pollution aerosol over North America: Organic components and their influence on spec-tral optical properties and humidification response. J. Geophys. Res., 2007, 112, D12S18; doi:10.1029/2006JD007777.
  • Kuniyal, J. C., Sharma, M., Chand, K. and Mathela, C. S., Water soluble ionic components in particulate matter (PM10) during high pollution episode days at Mohal and Kothi in the North-Western Himalaya, India. Aerosol Air Qual. Res., 2015, 15, 529–543.
  • Joshi, H., Naja, M., David, L. M., Gupta, T., Gogoi, M. M. and Babu, S. S., Absorption characteristics of aerosols over the central Himalayas and its adjacent foothills. Atmos. Res., 2019, 233, 104718; doi:10.1016/j.atmosres.2019.104718.
  • Dumka., U. C., Manchanda, R. K., Sinha, P. R., Sreenivasan, S., Moorthy, K. K. and Babu, S. S., Temporal variability and radia-tive impact of black carbon aerosol over tropical urban station Hyderabad. J. Atmos. Sol. Terr. Phys., 2013; doi:10.1016/ j.jastp.2013.08.003.
  • Pandey, S. K. and Vinoj, V., Surprising increase in aerosol amid widespread decline in pollution over India during the Covid19 Lockdown, EarthArXiv., 2020; doi:10.31223/osf.io/5kmx2.
  • Kumar, R. et al., Sources of black carbon aerosols in South Asia and surrounding regions during the integrated campaign for aero-sols, gases and radiation budget (ICARB). Atmos. Chem. Phys., 2015, 15(10), 5415–5428; doi:10.5194/acp-15-5415-2015.

Abstract Views: 303

PDF Views: 88




  • Response of Ambient BC Concentration Across the Indian Region to the Nation-Wide Lockdown: Results from the ARFINET Measurements of ISRO-GBP

Abstract Views: 303  |  PDF Views: 88

Authors

Mukunda M. Gogoi
Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, India
S. Suresh Babu
Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, India
B. S. Arun
Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, India
K. Krishna Moorthy
Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru 560 012, India
A. Ajay
Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru 560 012, India
P. Ajay
Centre for Atmospheric Studies, Dibrugarh University, Dibrugarh 786 004, India
Arun Suryavanshi
Regional Remote Sensing Centre, Indian Space Research Organisation, Nagpur 440 033, India
Arup Borgohain
North Eastern – Space Application Centres, Shillong 793 103, India
Anirban Guha
Department of Physics, Tripura University, Suryamaninagar, Agartala 799 022, India
Atiba Shaikh
Department of Marine Sciences, Goa University, Goa 403 206, India
Binita Pathak
Centre for Atmospheric Studies, Dibrugarh University, Dibrugarh 786 004, India
Biswadip Gharai
National Remote Sensing Centre, Indian Space Research Organisation, Hyderabad 500 037, India
Boopathy Ramasamy
Indian Institute of Mineral and Materials Technology, Bhubaneswar 751 013, India
G. Balakrishnaiah
Sri Krishna Devaraya University, Anantapur 515 003, India
Harilal B. Menon
Department of Marine Sciences, Goa University, Goa 403 206, India
Jagdish Chandra Kuniyal
G. B. Pant Institute of Himalayan Environment and Development, Kullu 175 126, India
Jayabala Krishnan
Tamil Nadu Agricultural University, Coimbatore 641 003, India
K. Rama Gopal
Sri Krishna Devaraya University, Anantapur 515 003, India
M. Maheswari
Tamil Nadu Agricultural University, Coimbatore 641 003, India
Manish Naja
Aryabhatta Research Institute of Observational Sciences, Nainital 263 002, India
Parminder Kaur
Department of Physics, Tripura University, Suryamaninagar, Agartala 799 022, India
Pradip K. Bhuyan
Centre for Atmospheric Studies, Dibrugarh University, Dibrugarh 786 004, India
Pratima Gupta
Department of Chemistry, Dayalbagh Educational Institute, Agra 282 005, India
Prayagraj Singh
Department of Physics, D.D.U. Gorakhpur University, Gorakhpur 273 009, India
Priyanka Srivastava
Aryabhatta Research Institute of Observational Sciences, Nainital 263 002, India
R. S. Singh
Department of Chemical Engineering, IIT-BHU, Varanasi 221 005, India
Ranjit Kumar
Department of Chemistry, Dayalbagh Educational Institute, Agra 282 005, India
Shantanu Rastogi
Department of Physics, D.D.U. Gorakhpur University, Gorakhpur 273 009, India
Shyam Sundar Kundu
North Eastern – Space Application Centres, Shillong 793 103, India
Sobhan Kumar Kompalli
Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, India
Subhasmita Panda
Indian Institute of Mineral and Materials Technology, Bhubaneswar 751 013, India
Tandule Chakradhar Rao
Sri Krishna Devaraya University, Anantapur 515 003, India
Trupti Das
Indian Institute of Mineral and Materials Technology, Bhubaneswar 751 013, India
Yogesh Kant
Indian Institute of Remote Sensing, Indian Space Research Organisation, Dehradun 248 001, India

Abstract


In this study, we assess the response of ambient aero-sol black carbon (BC) mass concentrations and spec-tral absorption properties across Indian mainland during the nation-wide lockdown (LD) in connection with the Coronavirus Disease 19 (COVID-19) pan-demic. The LD had brought near to total cut-off of emissions from industrial, traffic (road, railways, ma-rine and air) and energy sectors, though the domestic emissions remained fairly unaltered. This provided a unique opportunity to delineate the impact of fossil fuel combustion sources on atmospheric BC characte-ristics. In this context, the primary data of BC meas-ured at the national network of aerosol observatories (ARFINET) under ISRO-GBP are examined to assess the response to the seizure of emissions over distinct geographic parts of the country. Results indicate that average BC concentrations over the Indian mainland are curbed down significantly (10–40%) from pre-lockdown observations during the first and most in-tense phase of lockdown. This decline is significant with respect to the long-term (2015–2019) averaged (climatological mean) values. The drop in BC is most pronounced over the Indo-Gangetic Plain (>60%) and north-eastern India (>30%) during the second phase of lockdown, while significant reduction is seen during LD1 (16–60%) over central and peninsular Indian as well as Himalayan and sub-Himalayan regions. De-spite such a large reduction, the absolute magnitude of BC remained higher over the IGP and north-eastern sites compared to other parts of India. Notably, the spectral absorption index of aerosols changed very little over most of the locations, indicating the still persisting contribution of fossil-fuel emissions over most of the locations.

Keywords


ARFINET, Black Carbon, COVID-19.

References





DOI: https://doi.org/10.18520/cs%2Fv120%2Fi2%2F341-351