The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Crew safety holds highest priority in manned space missions. Crew Escape System (CES) intends to rescue the Crew Module (CM) which accommodates crew members in case of emergency abort situations. Pad Abort Test (PAT) demonstrates the functioning of CES during abort scenarios at the launch pad. CES pulls away CM from the launch pad using specially designed, quick-acting solid Escape Motors. CES-PAT vehicle is engulfed in hot exhaust plumes of these motors during its ascent, exposing the vehicle surfaces to severe thermal environments. Hence estimation of aerothermal heating levels and Thermal Protection System (TPS) design for CES-PAT vehicle structures are mission-critical. Thermal management of avionic packages housed inside CM is to be ensured for its safe functioning. This article highlights the different aerothermal environments experienced during CESPAT mission, design approaches adopted for estimating heating levels, TPS design and thermal management of avionic systems. Post-flight observations and assessment on aerothermal measurements during CES-PAT mission are also included. Aerothermal measurements confirmed the adequacy of the adopted design approach.

Keywords

Aerothermal Design, Crew Module, Heat Flux, Temperature, Thermal Protection System.
User
Notifications
Font Size