Open Access Open Access  Restricted Access Subscription Access

Ayurveda Rasayana in Prophylaxis of Covid-19


Affiliations
1 AYUSH Centre of Excellence, Centre for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune Univer-sity, Pune 411 007, India
2 AYUSH Centre of Excellence, Centre for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune 411 007, India
3 Serum Institute of India Ltd, Pune 411 028, India
4 Centre for Rheumatic Diseases, Pune 411 001, India
 

Respiratory viral infections such as SARS-CoV-2 affect immune homeostasis by altering the immune regulatory network leading to decreased responsiveness, changes in lymphocyte sub-populations and decreased macrophage function1 . Clinically, the immune response induced by SARS-CoV-2 infection occurs in two phases: the first immune defence-based protective phase and the second inflammation-driven damaging phase2 . The first immune defence-based protective phase is characterized by recruitment of antibody-secreting cells, follicular helper T-cells, activated CD4 and CD8 T-cells and immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies that bind to SARS-CoV-2 (ref.3). The second phase leads to uncontrolled cytokine release causing cytokine release syndrome (CRS), or ‘cytokine storm’ characterized by increased IL-2, IL-7, granulocyte colony stimulating factor, IFN-gamma and TNF-alpha4 . CRS damages tissues of the lungs, kidney and heart leading to rapid multiorgan failure. The deaths from COVID-19 are due to massive alveolar damage leading to acute respiratory distress syndrome (ARDS) that culminates in respiratory failure. Restoration of Th1/Th-2 cytokine balance is one of the mechanisms of establishing immune homeostasis5,6 .
User
Notifications
Font Size

  • Zhou, Y. et al., Natl. Sci. Rev., 2020, nwaa041.
  • Shi, Y. et al., Cell Death Differ., 2020.
  • Thevarajan, I. et al., Nat. Med., 2020.
  • Mehta, P. M., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S. and Manson, J. J., Lancet, 2020 (published online 16 March).
  • Kidd, P., Altern. Med. Rev., 2003, 8(3), 223–246.
  • Spellberg, B. and Edwards Jr, J. E., Clin. Infect. Dis., 2001, 32(1), 76–102.
  • Yan, G. et al., Lancet Infect. Dis., 2020, S1473-3099(20)30158-4.
  • Guo, X. J., Semin. Immunopathol., 2017, 39(5), 541–550.
  • Ben-Zvi, I. et al., Clin. Rev. Allergy Immunol., 2012, 42(2), 145–153.
  • Chopra, A., Saluja, M. and Venugopalan, A., Arthritis Rheum., 2014, 66(2), 319– 326.
  • Liu, J. et al., Cell Discov., 2020, 6, 16.
  • Chen, Z. et al., medRxiv, 2020.03.22.20040758
  • Yazdany, J. and Kim, A. H., Ann. Inter.Med.. 31 March 2020, doi:10.7326/M20-1334.
  • https://www.mohfw.gov.in/pdf/Advisory-ontheuseofHydroxychloroquinasprophy-laxisforSARSCoV2infection.pdf
  • https://www.un.org/sustainabledevelop-ment/blog/2020/03/un-health-chief-announces-global-solidarity-trial-to-jumpstart-search-for-covid-19-treatment/
  • Saggam. A. et al., J. Ethnopharmacol., 2020, 255, 112759.
  • Chopra, A. et al., J. Rheumatol., 2000, 27, 1365–1372.
  • Chopra, A., Saluja, M. and Tillu, G., J. Ayurveda Integr. Med., 2010, 1(3), 190– 198.
  • Chopra, A. et al., J. Ayurveda Integr. Med., 2018, 9(3), 201–208.
  • Chopra, A. et al., J. Ayurveda Integr. Med., 2012, 3(1), 38–44.
  • Ritchie, A. I. and Singanayagam, A., Lancet, 2020, S0140–6736(20), 30691– 30697.
  • Agarwal, R. et al., J. Ethnopharmacol., 1999, 67, 27–35.
  • Diwanay, S., Chitre, D. and Patwardhan, B., J. Ethnopharmacol., 2004, 90, 49–55.
  • Gautam, M. et al., J. Ethnopharmacol., 2009,121(2), 241–247.
  • Gautam, M. et al., Int. Immunopharmacol., 2004, 4, 841–849.
  • Patil D. et al., Integr. Cancer Ther., 2014, 13(2), 167–175.
  • Patwardhan, B. and Gautam, M., Drug Discov. Today, 2005, 10(7), 495–502.
  • Sumantran, V. N. et al., Phytother. Res., 2008, 22, 1342–1348.
  • Sumantran, V. N., et al., J. Biosci., 2007, 32(2), 299–307.
  • Bani, S. et al., J. Ethnopharmacol., 2006, 107, 107–115.
  • Teixeira, S. T. et al., Int. Immunopharmacol., 2006, 6(10), 1535–1542.
  • Ganguly, B. et al., Trop. Anim. Health Prod., 2019.
  • Kumar, R. et al., Indian J. Tuberc., 2018, 65(3), 246–251.
  • Patil, D. et al., Planta Med., 2010, 76, 481–488.
  • Grandhi, A., Mujumdar, A. M. and Patwardhan, B., J. Ethnopharmacol., 1994, 44, 131–135.
  • Patwardhan, B., Curr. Sci., 2012, 102(10), 1406–1417.
  • Chan, K. W., Wong, V. T. and Tang, S. C. W., Am. J. Chin. Med., 2020, 1–26.
  • TCM Clinical Studies registered in Chinese Clinical Trial Registry; http://www.chictr.org.cn(accessed on 29 March 2020).
  • Luo, H. et al., Chin. J. Integr. Med., 2020, 1–8.
  • Ren, J. L., Zhang, A. H. and Wang, X. J., Pharmacol. Res., 2020, 155, 104743.
  • Yang, Y. and Zhang, T., BMJ, 2020, 368.

Abstract Views: 275

PDF Views: 69




  • Ayurveda Rasayana in Prophylaxis of Covid-19

Abstract Views: 275  |  PDF Views: 69

Authors

Bhushan Patwardhan
AYUSH Centre of Excellence, Centre for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune Univer-sity, Pune 411 007, India
Preeti Chavan-Gautam
AYUSH Centre of Excellence, Centre for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune 411 007, India
Manish Gautam
Serum Institute of India Ltd, Pune 411 028, India
Girish Tillu
AYUSH Centre of Excellence, Centre for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune 411 007, India
Arvind Chopra
Centre for Rheumatic Diseases, Pune 411 001, India
Sunil Gairola
Serum Institute of India Ltd, Pune 411 028, India
Suresh Jadhav
Serum Institute of India Ltd, Pune 411 028, India

Abstract


Respiratory viral infections such as SARS-CoV-2 affect immune homeostasis by altering the immune regulatory network leading to decreased responsiveness, changes in lymphocyte sub-populations and decreased macrophage function1 . Clinically, the immune response induced by SARS-CoV-2 infection occurs in two phases: the first immune defence-based protective phase and the second inflammation-driven damaging phase2 . The first immune defence-based protective phase is characterized by recruitment of antibody-secreting cells, follicular helper T-cells, activated CD4 and CD8 T-cells and immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies that bind to SARS-CoV-2 (ref.3). The second phase leads to uncontrolled cytokine release causing cytokine release syndrome (CRS), or ‘cytokine storm’ characterized by increased IL-2, IL-7, granulocyte colony stimulating factor, IFN-gamma and TNF-alpha4 . CRS damages tissues of the lungs, kidney and heart leading to rapid multiorgan failure. The deaths from COVID-19 are due to massive alveolar damage leading to acute respiratory distress syndrome (ARDS) that culminates in respiratory failure. Restoration of Th1/Th-2 cytokine balance is one of the mechanisms of establishing immune homeostasis5,6 .

References





DOI: https://doi.org/10.18520/cs%2Fv118%2Fi8%2F1158-1160