Open Access Open Access  Restricted Access Subscription Access

The Influence of Nitrogen in Nutrient Solution on Growth, Nutrient Uptake and Enzymatic Activity of Anacardium othonianum Rizz


Affiliations
1 Goiano Federal Institute, Rio Verde Campus, Highway Sul Goiana, Km 01, 75901-970, Rio Verde – GO, Brazil
2 Federal University of Viçosa – UFV, Peter Henry Rolfs Avenue, 36570-900, Viçosa – MG, Brazil
3 IF Goiano, Morrinhos Campus, Highway 153, Km 633, 75650-000, Morrinhos – GO, Brazil
 

The availability of nutrients directly affects plant growth and development, with nitrogen being one of the most necessary nutrients in metabolism in general. Using the hypothesis that Anacardium othonianum Rizz. can be physiologically affected by different doses of nitrogen, this study aimed to evaluate aspects of growth, nutrient absorption and enzymatic activity during the production of seedlings of this species in hydroponic cultivation. The doses of 0.0, 2.5, 5.0, 7.5, 10.0, 12.5 and 15.0 mmol l–1 of N were tested. At 120 days after transplanting the seedlings into the nutrient solution, it was observed that doses higher than 10.0 mmol l–1 of N may constitute an excess, negatively affecting the number of leaves and leaf area. The enzymes glutamine synthetase and nitrate reductase showed greater activity in seedlings subjected to 2.5 mmol l–1 of N. Doses higher than this negatively affected the activity of these enzymes, indicating that A. othonianum Rizz. may be a species sensitive to ammonia. Alternatively, the absence of N (0.0 mmol l–1) stimulated ischolar_main mass accumulation, absorption of K, Mg and B ions, as well as nitric oxide synthesis. The present study contributes to obtain healthy seedlings and to the knowledge of the metabolism aspects of an important Cerrado fruit tree.

Keywords

Anacardium orthonianum, Hydroponics, Fruit Trees, Mineral Nutrition, Nitrogen Metabolism.
User
Notifications
Font Size

  • Wang, M. et al., The critical role of potassium in plant stress response. Int. J. Mol. Sci., 2013, 14, 7370–7390; doi:10.3390/ijms14047370
  • Mengutay, M. et al., Adequate magnesium nutrition mitigates adverse effects of heat stress on maize and wheat. Plant Soil, 2013, 368, 57–72; doi:10.1007/s11104-013-1761-6
  • Dias, M. J. T. et al., Adubação com nitrogênio e potássio em mudas de goiabeira em viveiro comercial. Semina: Ciênc. Agrár., 2012, 33, 2837–2842; doi:10.5433/1679-0359.2012v33Supl1p2837
  • Cameron, K. C., Di, H. J. and Moir, J. L., Nitrogen losses from the soil/plant system: a review. Ann. Appl. Biol., 2013, 162, 145–173; doi: 10.1111/aab.12014
  • Signor, D. and Cerri, C. E. P., Nitrous oxide emissions in agricultural soils: a review. Pesqui. Agropecu. Trop., 2013, 43, 322–338; doi:10.1590/S1983-40632013000300014
  • McAllister, C. H., Beatty, P. H. and Good, A. G., Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnol. J., 2012, 10, 1011–1025; doi:10.1111/j.1467-7652.2012.00700.x
  • Meena, S. K., Rakshit, A. and Meena, V. S., Effect of seed biopriming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal. Agric. Biotechnol., 2016, 6, 68– 75; doi:10.1016/j.bcab.2016.02.010
  • Chrysargyris, A., Panayiotou, C. and Tzortzakis, N., Nitrogen and phosphorus levels affected plant growth, essential oil composition and antioxidant status of lavender plant (Lavandula angustifolia Mill.). Ind. Crops Prod., 2016, 83, 577–586; doi:10.1016/j.indcrop.2015.12.067
  • Kashem, M. N. et al., Effect of nitrogen and potassium on dry matter production and yield in tropical sugar beet in Bangladesh.Pak. Sugar J., 2015, 30, 6–15.
  • Nagy, Z. et al., Metabolic indicators of drought stress tolerance in wheat: glutamine synthetase isoenzymes and Rubisco. Plant Physiol. Biochem., 2013, 67, 48–54; doi:10.1016/j.plaphy.2013.03.001
  • Krapp, A., Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Curr. Opin. Plant Biol., 2015, 25, 115–122; doi:10.1016/j.pbi.2015.05.010
  • Rosales, E. P. et al., Polyamines modulate nitrate reductase activity in wheat leaves: involvement of nitric oxide. Amino Acids, 2012, 42, 857–865; doi:10.1007/s00726-011-1001-4
  • Chamizo-Ampudia, A. et al., Nitrate reductase regulates plant nitric oxide homeostasis. Trends Plant Sci., 2017, 22(2), 163–174; doi:10.1016/j.tplants.2016.12.001
  • Balotf, S., Kavoosi, G. and Kholdebarin, B., Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings. Biotechnol. Appl. Biochem., 2016, 63, 220–229; doi:10.1002/bab.1362
  • Orsel, M. et al., Sixteen cytosolic glutamine synthetase genes identified in the Brassica napus L. genome are differentially regulated depending on nitrogen regimes and leaf senescence. J. Exp. Bot., 2014, 65, 3927–3947; doi:10.1093/jxb/eru041
  • Bernard, S. M. and Habash, D. Z., The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol., 2009, 182, 608–620; doi:10.1111/j.1469-8137.2009.02823.x
  • Ferreira, T. and Rasband, W., The ImageJ User Guide version 1.43. Image processing and analysis in Java. 2010; http://rsbweb.nih.gov/ij/docs/user-guide.pdf (accessed on 28 March 2016).
  • Malavolta, E., Vitti, G. C. and de Oliveira, A. S., Avaliação do estado nutricional das plantas: principios e aplicações. Potafós, Piracicaba, 1997.
  • Zhou, B. et al., Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. J. Exp. Bot., 2005, 56, 3223–3228; doi:10.1093/jxb/eri319
  • Rhodes, D. and Stewart, G. R., A procedure for the in vivo determination of enzyme activity in higher plant tissue. Planta, 1974, 118, 133–144; doi:10.1007/bf00388389
  • Radin, J. W., Distribution and development of nitrate reductase activity in germinating cotton seedlings. Plant Physiol., 1974, 53, 458–463.
  • Ferreira, D. F., SISVAR – Sistema de análise de variância. UFLA, Lavras-MG, 2010.
  • Esteban, R. et al., Review: mechanisms of ammonium toxicity and the quest for tolerance. Plant Sci., 2016, 248, 92–101; doi:10.1016/j.plantsci.2016.04.008
  • Pan, W. L. et al., Ammonia/ammonium toxicity ischolar_main symptoms induced by inorganic and organic fertilizers and placement. Agron. J., 2016, 108, 2485–2492; doi:10.2134/agronj2016.02.0122
  • Britto, D. T. and Kronzucker, H. J., NH4+ toxicity in higher plants: a critical review. J. Plant Physiol., 2002, 159, 584. doi:10.1078/0176-1617-0774
  • Ciriello, V., Guerrini, I. A. and Backes, C., Doses de nitrogênio no crescimento inicial e nutrição de plantas de guanandi. Cerne, 2014, 20, 653–660; doi:10.1590/01047760201420041445
  • Njuguna, C. W. et al., Evaluating the effect of plant population densities and nitrogen application on the leaf area index of maize in a reclaimed wetland in Kenya. Acta Univ. Sapientiae: Agric. Environ., 2016, 8, 139–148; doi:10.1515/ausae-2016-0013
  • Sakakibara, H., Takei, K. and Hirose, N., Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci., 2006, 11, 440–448; doi:10.1016/j.tplants.2006.07.004
  • Malavolta, E., Manual de nutrição mineral de plantas. Editora Agronomica Ceres Ltda, São Paulo, 2006.
  • Milić, B. et al., Nitrogen fertilization and chemical thinning with 6-benzyladenine affect fruit set and quality of golden delicious apples. Sci. Hortic., 2012, 140, 81–86; doi:10.1016/j.scienta.2012.03.029
  • Drechsel, P. et al., Managing water and nutrients to ensure global food security, while sustaining ecosystem services. In Managing Water and Fertilizer for Sustainable Agricultural Intensification (eds Drechsel, P. et al.), International Fertilizer Industry Association (IFA) Colombo: Paris, International Water Management Institute (IWMI) Georgia: Sri Lanka, International Plant Nutrition Institute (IPNI) Horgen, USA, Potash Institute (IPI), Switzerland, 2015, pp. 1–7.
  • Sung, J. et al., Metabolomic profiling from leaves and ischolar_mains of tomato (Solanum lycopersicum L.) plants grown under nitrogen, phosphorus or potassium-deficient condition. Plant Sci., 2015, 241, 55–64; doi:10.1016/j.plantsci.2015.09.027
  • Bessa, L. A. et al., Growth and nutrient accumulation of Anacardium othonianum Rizz. seedlings grown in nutrient solution. Chil. J. Agric. Res., 2013, 73, 301–308; doi:10.4067/s0718-58392013000300014
  • Viana, E. M. and Kiehl, J. C., Doses de nitrogênio e potássio no crescimento do trigo. Bragantia, 2010, 69, 975–982; doi:10.1590/S0006-87052010000400024
  • Gao, M. et al., The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit. Theor. Appl. Genet., 2016, 129, 1961–1973; doi:10.1007/s00122-016-2752-9
  • Silva, A. C. P., Borges, A. L. and Coelho, E. F., Acúmulo de nutrientes em bananeira ‘d’angola’ (tipo terra) sob doses de nitrogênio via água de irrigação. Rev. Bras. Fruticult., 2015, 37, 488–496; doi:10.1590/0100-2945-086/14
  • Geng, J. et al., Effects of polymer coated urea and sulfur fertilization on yield, nitrogen use efficiency and leaf senescence of cotton. Field Crops Res., 2016, 187, 87–95; doi:10.1016/j.fcr.2015.12.010
  • Qahar, A. and Ahmad, B., Effect of nitrogen and sulfur on maize hybrids yield and post-harvest soil nitrogen and sulfur. Sarhad J. Agric., 2016, 32, 239–251; doi:10.17582/journal.sja/2016.32.3.239.251
  • Chandel, G. et al., Effects of different nitrogen fertilizer levels and native soil properties on rice grain Fe, Zn and protein contents. Rice Sci., 2010, 17, 213–227; doi:10.1016/S1672-6308(09)60020-2
  • Brito Neto, J. F. et al., Produtividade e qualidade de frutos de mamoeiro ‘Sunrise Solo’ em função de doses de nitrogênio e boro. Semina: Ciênc. Agrár., 2011, 32, 69–80.
  • Giansoldati, V. et al., Nitrogen fertilizer improves boron phytoextraction by Brassica juncea grown in contaminated sediments and alleviates plant stress. Chemosphere, 2012, 87, 1119–1125; doi:10.1016/j.chemosphere.2012.02.005
  • Berteli, F. et al., Salt stress increases ferredoxin-dependent glutamate synthase activity and protein level in the leaves of tomato. Physiol. Plant., 1995, 93, 259–264; doi:10.1111/j.1399-3054.1995.tb02226.x
  • Viégas, R. A. et al., Redução assimilatória de NO-3 em plantas de cajueiros cultivados em meio salinizado. Rev. Bras. Eng. Agríc. Ambient., 2004, 8, 189–195.
  • Silva, L. S. et al., Possible role of glutamine synthetase of the prokaryotic type (GSI-like) in nitrogen signaling in Medicago truncatula. Plant Sci., 2015, 240, 98–108; doi:10.1016/ j.plantsci.2015.09.001
  • Yanagisawa, S., Transcription factors involved in controlling the expression of nitrate reductase genes in higher plants. Plant Sci., 2014, 229, 167–171; doi:10.1016/j.plantsci.2014.09.006
  • Chen, G. et al., Nitrogen use efficiency (NUE) in rice links to NH4+ toxicity and futile NH4+ cycling in ischolar_mains. Plant Soil, 2013, 369, 351–363; doi:10.1007/s11104-012-1575-y
  • Wulff, A. et al., Nitrite reduction and superoxide-dependent nitric oxide degradation by Arabidopsis mitochondria: influence of external NAD(P)H dehydrogenases and alternative oxidase in the control of nitric oxide levels. Nitric Oxide, 2009, 21, 132–139; doi:10.1016/j.niox.2009.06.003
  • Khairy, A. I. H. et al., Nitric oxide overcomes Cd and Cu toxicity in in vitro-grown tobacco plants through increasing contents and activities of rubisco and rubisco activase. Biochim. Open, 2016, 2, 41–51; doi:10.1016/j.sjbs.2013.06.002
  • Reyes, T. H. et al., Effect of carbon/nitrogen ratio on carbohydrate metabolism and light energy dissipation mechanisms in Arabidopsis thaliana. Plant Physiol. Biochem., 2016, 105, 195– 202; doi:10.1016/j.plaphy.2016.04.030
  • Brunetto, G. et al., Aplicação foliar de nitrogênio em videira: avaliação do teor na folha e das reservas nitrogenadas e de carboidratos nas gemas dos ramos do ano. Rev. Bras. Frutic., 2008, 30, 1119–1123; doi:10.1590/S0100-29452008000400045
  • Loaiza, P. A., Balocchi, O. and Bertrand, A., Carbohydrate and crude protein fractions in perennial ryegrass as affected by defoliation frequency and nitrogen application rate. Grass Forage Sci., 2016, 72, 556–567; doi:10.1111/gfs.12258
  • Neumann, M. et al., Chemical fractionation of carbohydrate and protein composition of corn silages fertilized with increasing doses of nitrogen. Cienc. Rural, 2017, 4, e20160270; doi:10.1590/0103-8478cr20160270

Abstract Views: 308

PDF Views: 83




  • The Influence of Nitrogen in Nutrient Solution on Growth, Nutrient Uptake and Enzymatic Activity of Anacardium othonianum Rizz

Abstract Views: 308  |  PDF Views: 83

Authors

Layara A. Bessa
Goiano Federal Institute, Rio Verde Campus, Highway Sul Goiana, Km 01, 75901-970, Rio Verde – GO, Brazil
Marialva A. Moreira
Federal University of Viçosa – UFV, Peter Henry Rolfs Avenue, 36570-900, Viçosa – MG, Brazil
Fabiano G. Silva
Goiano Federal Institute, Rio Verde Campus, Highway Sul Goiana, Km 01, 75901-970, Rio Verde – GO, Brazil
Luciana C. Vitorino
Goiano Federal Institute, Rio Verde Campus, Highway Sul Goiana, Km 01, 75901-970, Rio Verde – GO, Brazil
Clarice A. Megguer
IF Goiano, Morrinhos Campus, Highway 153, Km 633, 75650-000, Morrinhos – GO, Brazil

Abstract


The availability of nutrients directly affects plant growth and development, with nitrogen being one of the most necessary nutrients in metabolism in general. Using the hypothesis that Anacardium othonianum Rizz. can be physiologically affected by different doses of nitrogen, this study aimed to evaluate aspects of growth, nutrient absorption and enzymatic activity during the production of seedlings of this species in hydroponic cultivation. The doses of 0.0, 2.5, 5.0, 7.5, 10.0, 12.5 and 15.0 mmol l–1 of N were tested. At 120 days after transplanting the seedlings into the nutrient solution, it was observed that doses higher than 10.0 mmol l–1 of N may constitute an excess, negatively affecting the number of leaves and leaf area. The enzymes glutamine synthetase and nitrate reductase showed greater activity in seedlings subjected to 2.5 mmol l–1 of N. Doses higher than this negatively affected the activity of these enzymes, indicating that A. othonianum Rizz. may be a species sensitive to ammonia. Alternatively, the absence of N (0.0 mmol l–1) stimulated ischolar_main mass accumulation, absorption of K, Mg and B ions, as well as nitric oxide synthesis. The present study contributes to obtain healthy seedlings and to the knowledge of the metabolism aspects of an important Cerrado fruit tree.

Keywords


Anacardium orthonianum, Hydroponics, Fruit Trees, Mineral Nutrition, Nitrogen Metabolism.

References





DOI: https://doi.org/10.18520/cs%2Fv117%2Fi12%2F2023-2033