Open Access Open Access  Restricted Access Subscription Access

The Elements of Life


Affiliations
1 Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560 012, India
 

Here we describe the function of essential elements in biology and discuss about various aspects of these elements in human life as well as in bacteria and plants. The article highlights the importance of 28 essential elements in life from both chemical and biological perspective and their role in enzyme functions and several other biological pathways. Although the journey through periodic table illustrates the specific functions of a few elements, there may be other elements whose functions in living systems are poorly understood. Many drug molecules and metal-complexes have been discovered in the recent past for diagnosis and therapeutic purpose, which also highlight the importance of metal ions and synergistic functions of elements in human and other organisms.

Keywords

Chemical Elements, Periodic Table, Trace Elements, Transition Metals.
User
Notifications
Font Size

  • Nielsen, F. H., Ultratrace minerals. In Modern Nutrition in Health and Disease (eds Shils, M. E. et al.), Williams and Wilkins, Baltimore, 1999, 9th edn, p. 283.
  • (a) Chellan, P. and Sadler, P. J., The elements of life and medicines. Philos. Trans. R. Soc. Ser. A, 2015, 373, 20140182; (b) Maret, W., The metals in the biological periodic system of the elements: Concepts and conjectures. Int. J. Mol. Sci., 2016, 17, 66; (c) Aversa, R., Petrescu, V., Apicella, A. and Petrescu, I. T., The basic elements of life’s. Am. J. Eng. Appl. Sci., 2016, 9, 1189–1197.
  • (a) Martin, J. H. and Gordon, R. M., Northeast Pacific iron distributions in relation to phytoplankton productivity. Deep Sea Res., 1988, 35, 177–196; (b) Egami, F., Minor elements and evolution. Mol. Evol., 1974, 4, 113–120; (c) Byrne, A. R. and Kosta, L., Vanadium in foods and in human body fluids and tissues. Sci. Total Env., 1978, 10, 17–30; (d) Prasad, A. S., Trace Elements Iron in Human Metabolism, Plenum Medical Book Company, 1978; (e) Sennett, C., Rosenberg, L. E. G. and Millman, I. S., Transmembrane transport of cobalamin in prokaryotic and eukaryotic cells. Annu. Rev. Biochem., 1981, 50, 1053.
  • (a) Michiels, C., Physiological and pathological responses to hypoxia. Am. J. Pathol., 2004, 164, 1875–1882; (b) Ward, J. P. T., Oxygen sensors in context. Biochim. Biophys. Acta, 2008, 1777, 1–14.
  • (a) Mach, W. J., Thimmesch, A. R., Pierce, J. T. and Pierce, J. D., Consequences of hyperoxia and the toxicity of oxygen in the lung. Nurs. Res. Pract., 2011, 260482; (b) Forman, H. J., Maiorino, M. and Ursini, F., Signaling functions of reactive oxygen species. Biochemistry, 2010, 49, 835–842; (c) Rabinowitz, M. H., Inhibition of hypoxia-inducible factor prolyl hydroxylase domain oxygen sensors: tricking the body into mounting orchestrated survival and repair responses. J. Med. Chem., 2013, 56, 9369–9402.
  • (a) Finkel, T. and Holbrook, N. J., Oxidants, oxidative stress and the biology of ageing. Nature, 2000, 408, 239–247; (b) Autréaux, B. D. and Toledano, M. B., ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol., 2007, 8, 813–824.
  • (a) Wike-Hooley, J. L., Haveman, J. and Reinhold, H. S., The relevance of tumour pH to the treatment of malignant disease. Radiother. Oncol., 1984, 2, 343–366; (b) Mindell, J. A., Lysosomal acidification mechanisms. Annu. Rev. Physiol., 2012, 74, 69–86.
  • Mayle, K. M., Le, A. M. and Kamei, D. T., The intracellular trafficking pathway of transferrin. Biochim. Biophys. Acta, 2012, 1820, 264–281.
  • Desguin, B. et al., Lactate racemase is a nickel-dependent enzyme activated by a widespread maturation system. Nat. Commun., 2014, 5, 3615.
  • (a) Johnson, T. R., Mann, B. E., Clark, J. E., Foresti, R., Green, C. J. and Motterlini, R., Metal carbonyls: A new class of pharmaceuticals? Angew. Chem. Int. Ed., 2003, 42, 3722–3729; (b) Mann, B. E. and Motterlini, R., CO and NO in medicine. Chem. Commun., 2007, 4197–4208.
  • The Nobel Prize in Physiology or Medicine, 1998, Nobelprize.org
  • (a) Knowles, R. G. and Moncada, S., Nitric oxide synthases in mammals. Biochem. J., 1994, 298, 249–258; (b) Thomas, D. D. et al., The chemical biology of nitric oxide: Implications in cellular signalling. Free Radic. Biol. Med., 2008, 45, 18–31.
  • (a) Moncada, S., Palmer, R. M. and Higgs, E. A., Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol. Rev., 1991, 43, 109–142; (b) Coletta, C. et al., Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc. Natl. Acad. Sci., USA, 2012, 109, 9161–9166.
  • Ingenbleek, Y. and Kimura, H., Nutritional essentiality of sulfur in health and disease. Nutr. Rev., 2013, 71, 413–432.
  • Pompella, A., Visvikis, A., Paolicchi, A., Tata, V. D. and Casini, A. F., The changing faces of glutathione, a cellular protagonist. Biochem. Pharmacol., 2003, 66, 1499–1503.
  • Wollman, E. E., Cloning and expression of a cDNA for human thioredoxin. J. Biol. Chem., 1988, 263, 15506–15512.
  • (a) Ravi, K., Brennan, L. A., Levic, S., Ross, P. A. and Black, S. M., S-nitrosylation of endothelial nitric oxide synthase is associated with monomerization and decreased enzyme activity. Proc. Natl. Acad. Sci., USA, 2004, 101, 2619–2624; (b) Hess, D. T., Matsumoto, A., Kim, S. O., Marshall, H. E. and Stamler, J. S., Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell Biol., 2005, 6, 150–166; (c) Gusarov, I. and Nudler, E., Enzymatically controlled, but intrinsically unstable, posttranslational modification. Mol. Cell., 2018, 69, 351–353.
  • (a) Paul, B. D. and Snyder, S. H., H2S signalling through protein sulfhydration and beyond. Nat. Rev. Mol. Cell Biol., 2012, 13, 499–507; (b) Hausenloy, D. J. and Yellon, D. M., Preconditioning and postconditioning: Underlying mechanisms and clinical application. Atherosclerosis, 2009, 204, 334–341; (c) Xu, S., Liu, Z. and Liu, P., Targeting hydrogen sulfide as a promising therapeutic strategy for atherosclerosis. Int. J. Cardiol., 2014, 172, 313–317.
  • (a) Beinert, H., Iron–sulfur proteins: ancient structures, still full of surprises. J. Biol. Inorg. Chem., 2000, 5, 2–15; (b) Lu, Y., Assembly and transfer of iron–sulfur clusters in the plastid. Front. Plant Sci., 2018, 9, 336.
  • Baker, S. B. and Worthley, L. I., The essentials of calcium, magnesium and phosphate metabolism: part I. Physiology. Crit. Care Resusc., 2002, 4, 301–306.
  • (a) Amanzadeh, J. and Reilly, R. F., Hypophosphatemia: an evidencebased approach to its clinical consequences and management. Nat. Clin. Pract. Nephrol., 2006, 2, 136–148; (b) Hruska, K. A., Mathew, S., Lund, R., Qiu, P. and Pratt, R., Hyperphosphatemia of chronic kidney disease. Kidney Int., 2008, 74, 148–157.
  • Helm, L. and Merbach, A. E., Water exchange on metal ions: experiments and simulations. Coord. Chem. Rev., 1999, 187, 151– 181.
  • (a) Hartwig, A., Role of magnesium in genomic stability. Mutat. Res., 2001, 475, 113–121; (b) Yang, W., Lee, J. Y. and Nowotny, M., Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity. Mol. Cell, 2006, 22, 5–13; (c) Selmer, M. et al., Structure of the 70S ribosome complexed with mRNA and tRNA. Science, 2006, 313, 1935–1942.
  • Schmidt, H. H., Pollock, J. S., Nakane, M., Förstermann, U. and Murad, F., Ca2+ calmodulin-regulated nitric oxide synthases. Cell Calcium, 1992, 13, 427–434.
  • (a) Silver, I. A., Murrills, R. J. and Etherington, D. J., Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp. Cell Res., 1988, 175, 266–276; (b) Delaissé, J. M., Andersen, T. L., Engsig, M. T., Henriksen, K., Troen, T. and Blavier, L., Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities. Microsc. Res. Tech., 2003, 61, 504–516; (c) Moonga, B. S. et al., Identification and characterization of a sodium/calcium exchanger, NCX-1, in osteoclasts and its role in bone resorption. Biochem. Biophys. Res. Commun., 2001, 283, 770–775.
  • (a) Akabas, M. H., Cystic fibrosis transmembrane conductance regulator structure and function of an epithelial chloride channel. J. Biol. Chem., 2000, 275, 3729–3732; (b) Wine, J. J., The genesis of cystic fibrosis lung disease. J. Clin. Invest., 1999, 103, 309– 312.
  • (a) Kettle, A. J., Albrett, A. M., Chapman, A. L., Dickerhof, N., Forbes, L. V., Khalilova, I. and Turner, R., Measuring chlorine bleach in biology and medicine. Biochim. Biophys. Acta, 2014, 1840, 781–793; (b) Kettle, A. J., Anderson, R. F., Hampton, M. B. and Winterbourn, C. C., Reactions of superoxide with myeloperoxidase. Biochemistry, 2007, 46, 4888–4897.
  • (a) Andreini, C., Bertini, I. and Rosato, A., Metalloproteomes: a bioinformatic approach. Acc. Chem. Res., 2009, 42, 1471–1479; (b) Balla, J., Vercellotti, G. M., Nath, K., Yachie, A., Nagy, E., Eaton, J. W. and Balla, G., Haem, haem oxygenase and ferritin in vascular endothelial cell injury. Nephrol. Dial. Transplant., 2003, 18, v8–v12.
  • Hider, R. C. and Kong, X., Iron: effect of overload and deficiency. In Interrelations between Essential Metal Ions and Human Diseases, Dordrecht, The Netherlands: Springer Science and Business Media BV, 2013, pp. 229–294.
  • Neilands, J. B., Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem., 1995, 270, 26723– 26726.
  • Gkouvatsos, K., Papanikolaou, G. and Pantopoulos, K., Regulation of iron transport and the role of transferrin. Biochim. Biophys. Acta, 2012, 1820, 188–202.
  • (a) Taft, K. L., Papaefthymiou, G. C. and Lippard, S. J., A mixedvalent polyiron oxo complex that models the biomineralization of the ferritin core. Science, 1993, 259, 1302–1305; (b) Wang, W., Knovich, M. A., Coffman, L. G., Torti, F. M. and Torti, S. V., Serum ferritin: past, present and future. Biochim. Biophys. Acta, 2010, 1800, 760–769.
  • (a) Ordway, G. A. and Garry, D. J., Myoglobin: an essential hemoprotein in striated muscle. J. Exp. Biol., 2004, 207, 3441– 3446; (b) Suzukia, T. and Imaib, K., Evolution of myoglobin. CMLS, Cell. Mol. Life Sci., 1998, 54, 979–1004; (c) Volkova, N. and Arab, L., Evidence-based systematic literature review of hemoglobin/ hematocrit and all-cause mortality in dialysis patients. Am. J. Kidney Dis., 2006, 47, 24–36; (d) Mihailescu, M. R. and Russu, I. M., A signature of the T → R transition in human haemoglobin. Proc. Natl. Acad. Sci., USA, 2001, 98, 3773–3777.
  • (a) Stenkamp, R. E., Dioxygen and hemerythrin. Chem. Rev., 1994, 94, 715–726; (b) Khan, F. S. T., Guchhait, T., Sasmal, S. and Rath, S. P., Hydroxo-bridged diiron(iii) and dimanganese(iii) bisporphyrins: modulation of metal spins by counter anions. Dalton Trans., 2017, 46, 1012–1037.
  • (a) Coon, M. J., Cytochrome P450: Nature’s most versatile biological catalyst. Annu. Rev. Pharmacol. Toxicol., 2005, 45, 1–25; (b) Manikandan, P. and Nagini, S., Cytochrome P450 structure, function and clinical significance: a review. Curr. Drug Targets, 2018, 19, 38–54.
  • Michel, H., Behr, J., Harrenga, A. and Kannt, A., Cytochrome C oxidase: Structure and spectroscopy. Annu. Rev. Biophys. Biomol. Struct., 1998, 27, 329–356.
  • Hoffman, B. M., Lukoyanov, D., Yang, Z. Y., Dean, D. R. and Seefeldt, L. C., Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev., 2014, 114, 4041–4062.
  • (a) Andreini, C., Banci, L., Bertini, I. and Rosato, A., Counting the Zinc-proteins encoded in the human genome. J. Proteome Res., 2006, 5, 196–201; (b) Auld, D. S., Zinc coordination sphere in biochemical zinc sites. BioMetals, 2001, 14, 271–313.
  • (a) Supuran, C. T., Carbonic anhydrases-an overview. Curr. Pharm. Des., 2008, 14, 603–614; (b) Supuran, C. T., Carbonic anhydrases and metabolism. Metabolites, 2018, 8, 25.
  • Crabb, D. W., Matsumoto, M., Chang, D. and You, M., Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology. Proc. Nutr. Soc., 2004, 63, 49–63.
  • Valentine, J. S., Doucette, P. A. and Zittin Potter, S., Copper–zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu. Rev. Biochem., 2005, 74, 563–593.
  • (a) Bush, K., Past and present perspectives on β -lactamases. Antimicrob. Agents Chemother., 2018, 62, e01076–18; (b) Majiduddin, F. K., Materon, I. C. and Palzkill, T. G., Molecular analysis of beta-lactamase structure and function. Int. J. Med. Microbiol., 2002, 292, 127–137; (c) Bigley, A. N. and Raushel, F. M., Catalytic mechanisms for phosphotriesterases. Biochim. Biophys. Acta, 2013, 1834, 443–453; (d) Ahmad, S. I., Handbook of Mitochondrial Dysfunction, Taylor & Francis Group LLC, 2019.
  • Hellman, N. E. and Gitlin, J. D., Ceruloplasmin metabolism and function. Annu. Rev. Nutr., 2002, 22, 439–458.
  • (a) Kosman, D. J., Copper in the brain and Alzheimer’s disease. J. Biol. Inorg. Chem., 2010, 15, 15–28; (b) Kaim, W. and Rall, J., Copper – a ‘modern’ bioelement. Angew. Chem. Int. Ed., 1996, 35, 43–60.
  • Kato, S., Matsui, T., Gatsogiannis, C. and Tanaka, Y., Molluscan hemocyanin: structure, evolution, and physiology. Biophys. Rev., 2018, 10, 191–202.
  • Sánchez-Ferrer, A., Rodríguez-López, J. N., García-Cánovas, F. and García-Carmona, F., Tyrosinase: a comprehensive review of its mechanism. Biochim. Biophys. Acta, 1995, 1247, 1–11.
  • Bie, P., Muller, P., Wijmenga, C. and Klomp, L. W. J., Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes. J. Med. Genet., 2007, 44, 673–688.
  • Martinez-Finley, E. J., Gavin, C. E., Aschner, M. and Gunter, T. E., Manganese neurotoxicity and the role of reactive oxygen species. Free Radic. Biol. Med., 2013, 62, 65–75.
  • Avila, D. S., Puntel, R. L. and Aschner, M., Manganese in health and disease. In Interrelations between Essential Metal Ions and Human Diseases, Springer Science and Business Media BV, Dordrecht, The Netherlands, 2013, pp. 199–227.
  • Büchel, C., Barber, J., Ananyev, G., Eshaghi, S., Watt, R. and Dismukes, C., Photoassembly of the manganese cluster and oxygen evolution from monomeric and dimeric CP47 reaction center photosystem II complexes. Proc. Natl. Acad. Sci., USA, 1999, 96, 14288–14293.
  • (a) Crans, D. C., Smee, J. J., Gaidamauskas, E. and Yang, L., The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem. Rev., 2004, 104, 849–902; (b) Winter, J. M. and Moore, B. S., Exploring the chemistry and biology of vanadium-dependent haloperoxidases. J. Biol. Chem., 2009, 284, 18577–18581.
  • Rehder, D., The bioinorganic chemistry of vanadium. Angew. Chem. Int. Ed., 1991, 30, 148–167.
  • Littlechild, L., Rodriguez, E. G., Dalby, A. and Isupov, M., Structural and functional comparisons between vanadium haloperoxidase and acid phosphatase enzymes. J. Mol. Recognit., 2002, 15, 291–296.
  • Uekia, T., Adachia, T., Kawanoa, S., Aoshima, M., Yamaguchi, N., Kanamori, K. and Michibata, H., Vanadium-binding proteins (vanabins) from a vanadium-rich ascidian Ascidia sydneiensissamea. Biochim. Biophys. Acta, 2003, 1626, 43–50.
  • Banerjee, R. and Ragsdale, S. W., The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes1. Annu. Rev. Biochem., 2003, 72, 209–247.
  • Burguera, J. L. and Burguera, M., Molybdenum in human whole blood of adult residents of the Merida State (Venezuela). J. Trace Elem. Med. Biol., 2007, 21, 178–183.
  • (a) Kuper, J., Llamas, A., Hecht, H. J., Mendel, R. R. and Schwarz, G., Structure of the molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism. Nature, 2004, 430, 803–806; (b) Schwarz, G., Mendel, R. R. and Ribbe, M. W., Molybdenum cofactors, enzymes and pathways. Nature, 2009, 460, 839–847.
  • Schwarz, K. and Mertz, W., Chromium(III) and the glucose tolerance factor. Arch. Biochem. Biophys., 1959, 85, 292–295.
  • Schwarz, K. and Foltz, C. M., Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J. Am. Chem. Soc., 1957, 79, 3292–3293.
  • (a) Flohé, L., Günzler, E. A. and Schock, H. H., Glutathione peroxidase: a selenoenzyme. FEBS Lett., 1973, 32, 132–134; (b) Rotruck, J. T. Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G. and Hoekstra, W. G., Selenium: biochemical role as a component of glutathione peroxidase. Science, 1973, 179, 588– 590; (c) Behne, D., Kyriakopoulos, A., Meinhold, H. and Köhrle, J., Identification of type I iodothyronine 5′-deiodinase as a selenoenzyme. Biochem. Biophys. Res. Commun., 1990, 173, 1143–1149; (d) Tamura, T. and Stadtman, T. C., A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. Proc. Natl. Acad. Sci., USA, 1996, 93, 1006–1011; (e) Mustacich, D. and Powis, G., Biochem. J., 2000, 346, 1–8; (f) Bhowmick, D. and Mugesh, G., Insights into the catalytic mechanism of synthetic glutathione peroxidase mimetics. Org. Biomol. Chem., 2015, 13, 10262–10272.
  • Arthur, J. R., Nicol, F. and Beckett, G. J., The role of selenium in thyroid hormone metabolism and effects of selenium deficiency on thyroid hormone and iodine metabolism. Biochem. J., 1990, 272, 537–540; (b) Davey, J. C., Becker, K. B., Schneider, M. J., Germain, G. L. and Galton, V. A., Cloning of a cDNA for the type II iodothyronine deiodinase. J. Biol. Chem., 1995, 270, 26786– 26789; (c) Croteau, W., Whittemore, S. K., Schneider, M. J. and Germain, D. L., Cloning and expression of a cDNA for a mammalian type III iodothyronine deiodinase. J. Biol. Chem., 1995, 270, 16569–16575.
  • Turanov, A. A., Xu, X. M., Carlson, B, A., Yoo, M. H., Gladyshev, V. M. and Hatfield, D. L., Advances in the understanding of mammalian copper transporters. Adv. Nutr., 2011, 2, 122– 128.
  • Yao, Y., Pei, F. and Kang, P., Selenium, iodine, and the relation with Kashin-Beck disease. Nutrition, 2011, 27, 1095–1100.
  • Citterio, C. E., Targovnik, H. M. and Arvan, P., The role of thyroglobulin in thyroid hormonogenesis. Nat. Rev. Endocrinol., 2019, 15, 323–338.
  • St Germain, D. L., Iodothyronine deiodinase. Trends Endocrinol. Metab., 1994, 5, 36–42.
  • (a) Swingle, W. W., Iodine and the thyroid: III. The specific action of iodine in accelerating amphibian metamorphosis. J. Gen. Physiol., 1919, 1, 593–606; (b) Sachs, L. M. and Buchholz, D. R., Insufficiency of thyroid hormone in frog metamorphosis and the role of glucocorticoids. Front. Endocrinol., 2019, 10, 1–12.
  • (a) Mohapatra, M., Anand, S., Mishra, B. K., Giles, D. E. and Singh, P., Review of fluoride removal from drinking water. J. Environ. Manage., 2009, 91, 67–77; (b) Everett, E. T., Fluoride’s effects on the formation of teeth and bones, and the influence of genetics. J. Dent. Res., 2011, 90, 552–560.
  • Surdacka, A., Stopa, J. and Torlinski, L., In situ effect of strontium toothpaste on artificially decalcified human enamel. Biol. Trace Elem. Res., 2007, 116, 147–153.
  • (a) Tomblyn, M., The role of bone-seeking radionuclides in the palliative treatment of patients with painful osteoblastic skeletal metastases. Cancer Control, 2012, 19, 137–144; (b) Gunawardana, D. H., Lichtenstein, M., Better, N. and Rosenthal, M., Results of strontium-89 therapy in patients with prostate cancer resistant to chemotherapy. Clin. Nucl. Med., 2004, 29, 81–85.
  • Delaissé, J. M., Andersen, T. L., Engsig, M. T., Henriksen, K., Troen, T. and Blavier, L., Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities. Microsc. Res. Tech., 2003, 61, 504–516.
  • Fukuma, M., Seto, Y. and Yamase, T., In vitro antiviral activity of polyoxotungstate (PM-19) and other polyoxometalates against herpes simplex virus. Antiviral Res., 1991, 16, 327–339.
  • Naujokas, M. F., Anderson, B., Ahsan, H., Aposhian, H. V., Graziano, J. H., Thompson, C. and Suk, W. A., The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ. Health Perspect., 2013, 121, 295–302.
  • (a) Thomas, D. J. et al., Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals. Exp. Biol. Med., 2007, 232, 3–13. (b) Samikkannu, T., Chen, C.-H., Yih, L.-H., Wang, A. S. S., Lin, S.-Y., Chen, T.-C. and Jan, K.-Y., Reactive oxygen species are involved in arsenic trioxide inhibition of pyruvate dehydrogenase activity. Chem. Res. Toxicol., 2003, 16, 409–414.
  • (a) Aldridge, R. E. et al., Eosinophil peroxidase produces hypobromous acid in the airways of stable asthmatics. Free Radic. Biol. Med., 2002, 33, 847–856; (b) Mayeno, A. N., Curran, A. J., Roberts, R. L. and Foote, C. S., Eosinophils preferentially use bromide to generate halogenating agents. J. Biol. Chem., 1989, 264, 5660–5668; (c) McCall, A. S., Cummings, C. F., Bhave, G., Vanacore, R., Page-McCaw, A. and Hudson, B. G., Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture. Cell, 2014, 157, 1380–1392.

Abstract Views: 38

PDF Views: 0




  • The Elements of Life

Abstract Views: 38  |  PDF Views: 0

Authors

Sourav Ghosh
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560 012, India
Govindasamy Mugesh
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560 012, India

Abstract


Here we describe the function of essential elements in biology and discuss about various aspects of these elements in human life as well as in bacteria and plants. The article highlights the importance of 28 essential elements in life from both chemical and biological perspective and their role in enzyme functions and several other biological pathways. Although the journey through periodic table illustrates the specific functions of a few elements, there may be other elements whose functions in living systems are poorly understood. Many drug molecules and metal-complexes have been discovered in the recent past for diagnosis and therapeutic purpose, which also highlight the importance of metal ions and synergistic functions of elements in human and other organisms.

Keywords


Chemical Elements, Periodic Table, Trace Elements, Transition Metals.

References





DOI: https://doi.org/10.18520/cs%2Fv117%2Fi12%2F1971-1985