Open Access Open Access  Restricted Access Subscription Access

A Simple Method for the Separation and Detection of Trace Levels of Buprofezin, Flubendiamide and Imidacloprid by NP-HPTLC and RP-HPTLC


Affiliations
1 Department of Biochemistry, Gulbarga University, Kalaburagi - 585106, India
2 Regional Forensic Science Laboratory, Kalaburagi - 585102, India
3 Regional Forensic Science Laboratory, Mysuru - 570010, India
 

A study was undertaken to evaluate the retention (RF and RM) and separation (ΔRF, RαF , α and RS) of buprofezin (B), flubendiamide (F) and imidacloprid (I) using n-hexane-acetone (6.5 : 3.5 v/v) in the case of NPHPTLC and methanol-water (8 : 2 v/v) for RP-HPTLC as mobile phase. The study revealed that increasing the acetone content in NP-HPTLC and decreasing the water content in RP-HPTLC resulted in high resolution with increase in RF values for B, F and I. ΔRF > 0.04 and RS > 1.5 were achieved for all pairs of compounds (ΔRF(B–F) = 0.35, ΔRF(F–I) = 0.19, ΔRF(B–I) = 0.54, RS(B–F) = 4.12, RS(F–I) = 7.34, RS(B–I) = 2.02 using NP-HPTLC; ΔRF(F–B) = 0.23, ΔRF(I–F) = 0.26, ΔRF(I–B) = 0.49, RS(F–B) = 2.63, RS(I–F) = 2.97, RS(I–B) = 5.92 using RP-HPTLC). Imidacloprid was adsorbed strongly on NP-HPTLC layer and buprofezin on RP-HPTLC layer, as indicated by their high RM values. The maximum absorption of UV for B, F and I was found to be 252, 242 and 276 nm respectively. Stability analysis indicated that these compounds were stable up to 6 h in methanol and on the plates (NP-HPTLC and RPHPTLC layers). This protocol is useful for toxicologists to detect a mixture of these insecticides in forensic as well as environmental samples.

Keywords

Detection and Separation, Human Toxicity, Insecticides, Thin-Layer Chromatography.
User
Notifications
Font Size

  • Deborah, B. V., Mohiddin, M. J. and Madhuri, R. J., Interaction effects of selected pesticides on soil enzymes. Toxicol. Int., 2013, 20, 195–200.
  • Kumar, A., Verma, A. and Kumar, A., Accidental human poisoning with a neonicotinoid insecticide, imidacloprid: a rare case report from rural India with a brief review of literature. Egypt. J. Forensic. Sci., 2013, 3, 123–126.
  • Buckingham, S. D., Lapied, B., Corronc Le, H., Grolleau F. and Stattelle, D. B., Imidacloprid action on insect neuronal acetylcholine receptors. J. Exp. Biol., 1997, 200, 2685–2692.
  • Izawa, Y., Uchida, M. and Yasui, M., Mode of action of buprofezin on the twenty-eight-spotted ladybird, Henosepilachna vigintioctopunctata Fabricius. Agric. Biol. Chem., 1986, 50(5), 1369– 11371.
  • Ishaya, I., Mandel, Z. and Bulumberg, D., Effect of buprofezin on California red scale, Aonidiella aurantii (Maskell), in a citrus orchid. Isr. J. Entomol., 1992, 25, 67–71.
  • Valverde-Gracia, A., Gonzalez-Pradas, E. and Aguilera-del, R. A., Analysis of buprofezin residues in vegetables. Application to the degradation study on eggplant growth in a greenhouse. J. Agric. Food Chem., 1993, 41, 2319–2323.
  • Cobral, S., Garcia, P. and Soares, A. O., Effect of pirimicarb, buprofezin and pymetrozine on survival, development and reproduction of Coccinella undecimpunctata (Coleoptera: Coccinellidae). Biocontrol. Sci. Technol., 2008, 18(3), 307–318.
  • Tohnishi, M., Nishimatsu, T., Motoba, K., Hirooka, T. and Seo, A., Development of a novel insecticide, flubendiamide. J. Pestic. Sci., 2010, 35(4), 490–491.
  • Gopal, M. and Mishra, E., Analytical method for estimation of a new insecticide flubendiamide and its safety evaluation for usage in rice crop. Bull. Environ. Contam. Toxicol., 2008, 81, 360–364.
  • Mohapatra, S., Ahuja, A. K., Deepa, M., Sharma, D., Jagadish, G. K. and Rashmi, N., Persistence and dissipation of flubendiamide and desiodo flubendiamide in cabbage (Brassica oleracea Linne) and soil. Bull. Environ. Contam. Toxicol., 2010, 85, 352–356.
  • Paramasivam, M. and Banerjee, H., Simultaneous determination of flubendiamide its metabolite desi-doflubendiamide residues in cabbage, tomato and pigeon pea by HPLC. Bull. Environ. Contam. Toxicol., 2011, 87, 452–456.
  • Mahmoud, H. R., Biochemical impacts of Rynaxypyr (Coragen) and spinetoram (Radiant) on Spodoptera littoralis (Boisd.). Nat. Sci., 2013, 11(8), 40–47.
  • Caboni, P., Sarais, G., Angioni, A., Vargiu, S., Pagnozzi, D., Cabras, P. and Casida, J. E., Liquid chromatography–tandem mass spectrometric ion-switching determination of chlorantraniliprole and flubendiamide in fruits and vegetables. J. Agric. Food. Chem., 2008, 56, 7696–7699.
  • Dikshit, A. K. and Lal, O. P., Safety evaluation and persistence of imidacloprid on acid lime (Citrus aurantiifoliaswingle). Bull. Environ. Contam. Toxicol., 2002, 68, 495–501.
  • Elbert, A., Oberbec, H., Iwaya, K. and Tsuboi, S., Imidacloprid, a novel systemic nitromethylene analogue insecticide for crop protection. Proc. Brighton. Crop Prot. Conf.-Pests Dis., 1990, 21, 21–28.
  • Tomlin, C. D. S., The Pesticide Manual. A World Compendium, British Crop protection Council, UK, 1983, 7th edn.
  • Overmyer, J. P., Mason, B. N. and Armbrust, K. L., Acute toxicity of imidacloprid and fipronil to a nontargetaquatic insect, Simulium vittatum Zetterstedt cytospecies IS-7. Bull. Environ. Contam. Toxicol., 2005, 74, 872–879.
  • Gopal, M., Mukherjee, I. and Chandar, S., Behaviour of β-cyfluthrin and imidacloprid in mustard crop: alternative insecticide for aphid control. Bull. Environ. Contam. Toxicol., 2002, 68, 406–411.
  • Gupta, S., Gajbhiye, T., Kalpana and Agnihotri, N. P., Leaching behaviour of imidacloprid formulations in soil. Bull. Environ. Contam. Toxicol., 2002, 68, 502–508.
  • Bajwa, U. and Sandhu, K. S., Effect of handling and processing on pesticide residues in food – a review. J. Food Sci. Technol., 2014, 51, 201–220.
  • Cabras, P. et al., Determination of buprofezin, pyrithrin, and tebufenpyrad residues by gas chromatography–mass–selective detection in clementine citrus. J. Agric. Food Chem., 1998, 46, 4255–4259.
  • Santana dos Santos, T. F., Aquino, A., Dorea, H. S. and Novickiene, S., MSDP procedure for determining buprofezin, tetradifin, vinclozolin, and bifenthrin residues in propoils by gas chromatography– mass spectrometry. Anal. Bioanal. Chem., 2008, 390, 1425–1430.
  • Lee, Y. D. and Jang, S. W., Determination of buprofezin residues in rice and fruits using HPLC with LC/MS confirmation. Korean J. Environ. Agric., 2010, 29, 247–256.
  • Chawla, S., Patel, A. R., Patel, H. K. and Shah, P. G., Dissipation of flubendiamide in/on brinjal (Solanum melongena) fruits. Environ. Monit. Assess., 2011, 183, 1–4.
  • Takkar, R., Sahoo, S. K., Singh, G., Battu, R. M. and Singh, B., Dissipation pattern of flubendiamide in/onbrinjal (Solanum melongena L.). Environ. Monit. Assess., 2012, 184, 5077–5083.
  • Chandergaonkar, V. R., Shinde, D. B. and Mane, D. V., Thin-layer chromatographic detection and identification of the insecticide imidacloprid in biological materials. J. Planar Chromatogr., 2009, 22, 459–460.
  • Srivastava, A. K., Srivastava, M. K., Patel, D. K., Mudiam, M. K. R. and Srivastava, L. P., Gas-chromatographic determination of imidacloprid in water. J. Environ. Res. Dev., 2012, 7, 643–651.
  • Vilchez, J. L., EI-Khattabi, R., Fernandez, J., Gonzalez-Casado, A. and Navalon, A., Determination of imidacloprid in water and soil samples by gas chromatography–mass spectrometry. J. Chromatogr. A, 1996, 746, 289–294.
  • Nagaraju, P. M., Praveen, U. S., Kemparaju, K. and Mohan, B. M., Separation evaluation of selected organophosphorus fungicides by NP-TLC and RP-HPTLC. Asian J. Res. Chem., 2013, 6, 148–154.
  • Pandya, K. K., Satia, M., Gandhi, T. P., Modi, I. A., Modi, R. I. and Chakravarthy, B. K., Detection and determination of total amlodipine by high performance thin-layer chromatography: a useful technique for pharmacokinetic studies. J. Chromatogr. B, 1995, 667, 315–320.
  • Argekar, A. P. and Powar, S. G., Simultaneous determination of atenolol and amlodipine in tablets by high-performance thin-layer chromatography. J. Pharm. Biomed. Anal., 2000, 21, 1137–1142.
  • Otsubo, K., Seto, H., Futagami, K. and Oishi, R., Rapid and sensitive detection of benzodiazepines and zopiclone in serum using high performance thin-layer chromatography. J. Chromatogr. B, 1995, 669, 408–412.
  • Kar, A., Mandal, K., Kumar, R., Sahoo, S. K. and Singh, B., Qualitative and quantitative analysis of chlorantranniliprole and flubendiamide soluble concentrate formulations by high performance thin layer chromatography. J. Liq. Chromatogr., 2013, 36, 24–34.
  • Futagami, K., Narazaki, C., Kataoka, Y., Shuto, H. and Oishi, R., Application of high-performance thin-layer chromatography for the detection of organophosphorus insecticides in human serum after acute poisoning. J. Chromatogr. B, 1997, 704, 369–373.
  • Nagaraju, P. M., Sanganalmath, P. U., Kemparaju, K. and Mohan, B. M., Separation of organophosphorus fungicides by highperformance thin-layer chromatography. A new approach in forensic analysis. J. Planar Chromatogr., 2011, 24, 108–112.
  • Sanganalmath, P. U., Nagaraju, P. M. and Mohan, B. M., HPTLC method for the assay of thiopental in post-mortem blood in a fatal case of suicide. J. Pharm. Biomed. Anal., 2013, 80, 89–93.
  • Sanganalmath, P. U., Bharath, N. and Sreeramulu, K., Normaland reverse-phase thin-layer chromatography of three structurally related organophosphorus pesticides of forensic importance. J. Planar Chromatogr., 2017, 30(3), 154–163.
  • Armbruster, D. A. and Pry, T., Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev., 2008, 29, 49– 52.
  • Sharma, J. and Fried, B., Handbook of Thin-layer Chromatography, CRC Press, Boca Raton, Florida, USA, 2003, 3rd edn.

Abstract Views: 286

PDF Views: 82




  • A Simple Method for the Separation and Detection of Trace Levels of Buprofezin, Flubendiamide and Imidacloprid by NP-HPTLC and RP-HPTLC

Abstract Views: 286  |  PDF Views: 82

Authors

B. Nareshkumar
Department of Biochemistry, Gulbarga University, Kalaburagi - 585106, India
Praveen U. Sangnalmath
Regional Forensic Science Laboratory, Kalaburagi - 585102, India
S. Gayatridevi
Regional Forensic Science Laboratory, Mysuru - 570010, India
K. Sreeramulu
Department of Biochemistry, Gulbarga University, Kalaburagi - 585106, India

Abstract


A study was undertaken to evaluate the retention (RF and RM) and separation (ΔRF, RαF , α and RS) of buprofezin (B), flubendiamide (F) and imidacloprid (I) using n-hexane-acetone (6.5 : 3.5 v/v) in the case of NPHPTLC and methanol-water (8 : 2 v/v) for RP-HPTLC as mobile phase. The study revealed that increasing the acetone content in NP-HPTLC and decreasing the water content in RP-HPTLC resulted in high resolution with increase in RF values for B, F and I. ΔRF > 0.04 and RS > 1.5 were achieved for all pairs of compounds (ΔRF(B–F) = 0.35, ΔRF(F–I) = 0.19, ΔRF(B–I) = 0.54, RS(B–F) = 4.12, RS(F–I) = 7.34, RS(B–I) = 2.02 using NP-HPTLC; ΔRF(F–B) = 0.23, ΔRF(I–F) = 0.26, ΔRF(I–B) = 0.49, RS(F–B) = 2.63, RS(I–F) = 2.97, RS(I–B) = 5.92 using RP-HPTLC). Imidacloprid was adsorbed strongly on NP-HPTLC layer and buprofezin on RP-HPTLC layer, as indicated by their high RM values. The maximum absorption of UV for B, F and I was found to be 252, 242 and 276 nm respectively. Stability analysis indicated that these compounds were stable up to 6 h in methanol and on the plates (NP-HPTLC and RPHPTLC layers). This protocol is useful for toxicologists to detect a mixture of these insecticides in forensic as well as environmental samples.

Keywords


Detection and Separation, Human Toxicity, Insecticides, Thin-Layer Chromatography.

References





DOI: https://doi.org/10.18520/cs%2Fv115%2Fi5%2F895-903