Open Access Open Access  Restricted Access Subscription Access

Estimation of Elastic Parameters, Mineralogy and Pore Characteristics of Gondwana Shale in Eastern India for Evaluation of Shale Gas Potential


Affiliations
1 Department of Earth Sciences, Indian Institute of Technology Bombay, Mumbai 400 076, India
2 National Geophysical Research Institute, Hyderabad 500 007, India
 

Studies on resource potential of unconventional reservoirs are drawing the attention of scientific community since the last couple of decades. Because of low permeability of shale, the production demands hydraulic fracturing in shale layers. Brittleness index gives an idea on the toughness of shale layers and helps in setting the parameters for hydraulic fracturing. Elastic properties such as Young’s modulus are important parameters for building geo-mechanical models for rock strata which are essential for several applications related to mechanical rock failure during well drilling, completion and stimulation. The physical and geochemical properties of Gondwana shale samples from Eastern India were analysed for mineralogy, pore types and dynamic elastic properties using powder X-ray diffraction (XRD), scan electron microscopy (SEM) and ultrasonic velocity measurements respectively. The measured P- and S-wave velocities and the estimated elastic parameters of Gondwana shale samples show an increase in magnitude with depth indicating the effect of hardness and compaction. The effect of hardness on velocity and elastic parameter is also supported by the increase in quartz percentage in shale with depth. An empirical relationship between P- and S-wave velocity is proposed for Gondwana shale. The XRD experiments reveal the dominance of clay minerals over non-clay minerals in the samples lower the shear strength of South- Karanpura field, at shallow depth, supported by measured elastic properties. The presence of flaky clay texture/topography and abundant micro (>0.75 µm) and nano (<0.75 µm) pores of various shapes in the samples with organic matter in the SEM images suggests that formations are of high shale gas prospecting zones.

Keywords

Gondwana Shale, SEM, Shale Gas, Ultrasonic, XRD.
User
Notifications
Font Size

  • Sain, K., Rai, M. and Sen, M. K., A review on shale gas prospect in Indian sedimentary basins. J. Indian Geophys. Union, 2014, 18, 183–194.
  • Josh, M., Esteban, L., Piane, C. D., Sarout, J., Dewhurst, D. N. and Clennell, M. B., Laboratory characterisation of shale properties. J. Petrol. Sci. Eng., 2012, 88, 107–124; doi:10.1016/j.petrol.2012.01.023.
  • Hornby, B. E., Experimental laboratory determination of the dynamic elastic properties of wet, drained shales. J. Geophys. Res., 1998, 103, 29945–29964; doi:10.1029/97jb02380.
  • Loucks, R. G., Reed, R. M., Ruppel, S. C. and Jarvie, D. M., Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. J. Sediment. Res., 2009, 79, 848–861; doi:10.2110/jsr.2009.092.
  • Kuila, U. and Prasad, M., Specific surface area and pore-size distribution in clays and shales. Geophys. Prospect., 2013, 61, 341–362; doi:10.1111/1365-2478.12028.
  • Ross, D. J. and Bustin, R. M., The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Petrol. Geol., 2009, 26, 916–927; doi:10.1016/ j.marpetgeo.2008.06.004.
  • Taixian, Z., Characteristics of pore structure of marine shales in South China. Natural Gas Indus., 2012, 32, 1–4; doi: 10.3787/j.issn.1000-0976.2012.09.001.
  • Krinsley, D. H., Pye, K., Boggs Jr, S. and Tovey, N. K., Backscattered Scanning Electron Microscopy and Image Analysis of Sediments and Sedimentary Rocks, Cambridge University Press, 2005.
  • Moecher, D. P., Characterization and identification of mineral unknowns: a mineralogy term project. J. Geosci. Educ., 2004, 52, 5–9; doi:10.5408/1089-9995-52.1.5.
  • Konar, B. B., Banerjee, S. B., Chaudhuri, S. G., Choudhury, A., Das, N. S. and Sen, K., In Coal Preparation, Allied Publishers Ltd, New Delhi, India, 1997.
  • Mendhe, V. A., Kamble, A. D., Bannerjee, M., Mishra, S., Mukherjee, S. and Mishra, P., Evaluation of shale gas reservoir in Barakar and Barren Measures formations of north and south Karanpura Coalfields, Jharkhand. J. Geol. Soc. India, 2016, 88, 305–316; doi:10.1007/s12594-016-0493-7.
  • Tewari, A. and Dutta, S., Organic geochemistry and pore system characterization of gas shales: an example from the lower Gondwana shales, eastern India. In Proceedings of Society for Organic Petrology, Sydney, Australia, 2014, vol. 31, p. 154.
  • Mukhopadhyay, G., Mukhopadhyay, S. K., Roychowdhury, M. and Parui, P. K., Stratigraphic correlation between different Gondwana basins of India. J. Geol. Soc. India, 2010, 76, 251–266; doi:10.1007/s12594-010-0097-6.
  • Tewari, A., Dutta, S. and Sarkar, T., Organic geochemical characterization and shale gas potential of the Permian Barren measures formation, West Bokaro sub-basin, eastern India. J. Petroleum Geol., 2016, 39, 49–60; doi:10.1111/jpg.12627.
  • McSkimin, H. J., Ultrasonic methods for measuring the mechanical properties of liquids and solids. In Physical Acoustics (ed. Mason, W. P.), Academic Press, 1964, vol. 1, pp. 271–334; doi:10.1016/B9781-1-4832-2857-0.50010-1.
  • Yilmaz, O. Z., Engineering Seismology with Applications to Geotechnical Engineering. Society of Exploration Geophysicist, Tulsa, OK, USA, 2015; doi:10.1190/1.9781560803300.
  • Moore, D. M. and Reynolds, R. C., X-ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford University Press, New York, 1997.
  • Srodon, J., Drits, V. A., McCarty, D. K., Hsieh, J. C. and Eberl, D. D., Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations. Clays Clay Miner., 2001, 49, 514–528; doi:10.1346/ccmn.2001.0490604.
  • Bragg, W. L., The structure of some crystals as indicated by their diffraction of X-rays. Proc. R. Soc. Lond A: Math., Phys. Eng. Sci., 1913, 610, 248–277; doi:10.1098/rspa.1913.0083.
  • Reimer, L., Scanning electron microscopy: physics of image formation and microanalysis, Springer-Verlag, Berlin, Heidelberg, 2000; doi:10.1088/0957-0233/11/12/703.
  • Goldstein, J. et al., Scanning Electron Microscopy and X-ray Microanalysis: A Text for Biologists, Materials Scientists, and Geologists, Springer Science and Business Media, New York, 2003; doi:10.1007/978-1-4613-0491-3.
  • Lin, W., Ultrasonic velocities and dynamic elastic moduli of Mesaverde rocks. Lawrence Livermore Nat. Lab. 20273, CA, USA, 1985; https://www.osti.gov/scitech/biblio/5915663-ultrasonic-velocitiesdynamicelastic-moduli-mesaverde-rocks-revision
  • Robertson, J. D. and Corrigan, D., Radiation patterns of a shearwave vibrator in near-surface shale. Geophysics, 1983, 48, 19–26. doi:10.1190/1.1441401.
  • White, J. E., Martineau-Nicoletis, L. and Monash, C., Measured anisotropy in Pierre shale. Geophys. Prospect., 1983, 31, 709–725; doi:10.1111/j.1365-2478.1983.tb01081.x.
  • Roy, S., Near-surface characterization via seismic surface-wave inversion, Ph D diss., Department of Earth and Atmospheric Sciences, University of Houston, Houston, 2013.
  • Stewart, R. R., Ruiz, F., Wellner, J., Dyaur, N. and Huang, L., Exploration geophysics at the University of Houston: the shale trail and other unconventional voyages. Recorder., 2015, 40, 32–37; https://csegrecorder.com/assets/pdfs/2015/2015-09-RECORDER University_of_Houston.pdf
  • Breeden, D. and Shipman, J., Shale analysis for mud engineers. AADE-04-DF-HO-30. Drilling fluids conference, Astrodome, Houston, Texas, 2004, pp. 1–17.
  • Handin, J., Hager, R. V., Friedman, M. and Feather, J. N., Experimental deformation of sedimentary rocks under confining pressure: Pore pressure tests. AAPG Bull., 1963, 47, 717–755.
  • Davis, D. and Reynolds, S. J., Structural Geology of Rocks and Regions, Wiley and Sons, New York, 1996.
  • Wang, F. P. and Julia, F. W., Screening criteria for shale-gas systems. Gulf Coast Assoc. Geol. Soc. Trans., 2009, 59, 779– 793.
  • Jarvie, D. M., Hill, R. J., Ruble, T. E. and Pollastro, R. M., Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shalegas assessment. Am. Assoc. Pet. Geol. Bull., 2007, 91, 475–499; doi:10.1306/12190606068.
  • Perez Altamar, R. and Marfurt, K., Mineralogy-based brittleness prediction from surface seismic data: application to the Barnett Shale. Interpretation, 2014, 2, T255–T271; doi:10.1190/INT2013-0161.1.
  • Vernik, L. and Landis, C., Elastic anisotropy of source rocks: implication for hydrocarbon generation and primary migration. Am. Assoc. Pet. Geol. Bull., 1996, 80, 531–544; doi:10.1306/ 64ed8836-1724-11d7-8645000102c1865d.
  • Ahmad, M. and Haghighi, M., Mineralogy and petrophysical evaluation of Roseneath and Murteree shale formations, Cooper basin, Australia using QEMSCAN and CT scanning. In SPE Asia Pacific Oil and Gas Conference and Exhibition, Society of Petroleum Engineers, 2012; doi:10.2118/158461-MS.
  • Martin, R., Baihly, J. D., Malpani, R., Lindsay, G. J. and Atwood, W. K., Understanding production from Eagle Ford-Austin chalk system. In SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 2011; doi:10.2118/145117-MS.
  • Hosterman, J. W. and Whitlow, S. I., Clay mineralogy of Devonian shales in the Appalachian Basin (#1298). USGS Publications Warehouse, 1983; http://pubs.usgs.gov/pp/1298/report.pdf
  • Enomoto, C. B., Coleman Jr, J. L., Swezey, C. S., Niemeyer, P. W. and Dulong, F. T., Geochemical and mineralogical sampling of the Devonian shales in the Broadtop Synclinorium, Appalachian Basin, in Virginia, West Virginia, Maryland, and Pennsylvania (#2015-1061). USGS Publications Warehouse, 2015; https://pubs.er.usgs.gov/publication/ofr20151061
  • Vernik, L., Seismic petrophysics in quantitative interpretation. Society of Exploration Geophysicists, Tulsa, OK, USA, 2016; doi:10.1190/1.9781560803256.
  • Wang, G. and Carr, T. R., Organic-rich Marcellus Shale lithofacies modeling and distribution pattern analysis in the Appalachian Basin. Am. Assoc. Pet. Geol. Bull., 2013, 97, 2173–2205.
  • Loucks, R. G., Reed, R. M., Ruppel, S. C. and Hammes, U., Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. Am. Assoc. Pet. Geol. Bull., 2012, 96, 1071–1098; doi:10.1306/08171111061.
  • Slatt, R. M. and O’Brien, N. R., Pore types in the Barnett and Woodford gas shales: contribution to understanding gas storage and migration pathways in fine-grained rocks. Am. Assoc. Pet. Geol. Bull., 2011, 95, 2017–2030; doi:10.1306/03301110145.
  • Er, C., Zhao, J. Z., Bai, Y. B., Fan, H. and Shen, W. X., Reservoir characteristics of the organic-rich shales of the Triassic Yanchang Formation in Ordos Basin. Oil Gas Geol., 2013, 34, 708–716; doi:10.11743/ogg20130519.
  • Xiangzeng, W., Shengli, G. and Chao, G., Geological features of Mesozoic lacustrine shale gas in south of Ordos Basin, NW China. Petrol. Exp. Develop., 2014, 41, 326–337; doi:10.1016/S18763804(14)60037-9.
  • Zeng, W. T., Zhang, J. C., Ding, W. L., Wang, X. Z., Jiu, K. and Fu, J. L., Characteristics and influence factors of nanopores in Yanchang Shale reservoir: a case study of Liuping-171 well in Erdos Basin. J. China Coal Soc., 2014, 39, 1118–1126; doi:10.13225/j.cnki.jccs.2013.0842.
  • Chalmers, G. R., Bustin, R. M. and Power, I. M., Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. Am. Assoc. Pet. Geol. Bull., 2012, 96, 1099–1119; doi:10.1306/10171111052.

Abstract Views: 195

PDF Views: 72




  • Estimation of Elastic Parameters, Mineralogy and Pore Characteristics of Gondwana Shale in Eastern India for Evaluation of Shale Gas Potential

Abstract Views: 195  |  PDF Views: 72

Authors

Piyush Sarkar
Department of Earth Sciences, Indian Institute of Technology Bombay, Mumbai 400 076, India
Kumar Hemant Singh
Department of Earth Sciences, Indian Institute of Technology Bombay, Mumbai 400 076, India
Ranjana Ghosh
National Geophysical Research Institute, Hyderabad 500 007, India
Trilok Nath Singh
Department of Earth Sciences, Indian Institute of Technology Bombay, Mumbai 400 076, India

Abstract


Studies on resource potential of unconventional reservoirs are drawing the attention of scientific community since the last couple of decades. Because of low permeability of shale, the production demands hydraulic fracturing in shale layers. Brittleness index gives an idea on the toughness of shale layers and helps in setting the parameters for hydraulic fracturing. Elastic properties such as Young’s modulus are important parameters for building geo-mechanical models for rock strata which are essential for several applications related to mechanical rock failure during well drilling, completion and stimulation. The physical and geochemical properties of Gondwana shale samples from Eastern India were analysed for mineralogy, pore types and dynamic elastic properties using powder X-ray diffraction (XRD), scan electron microscopy (SEM) and ultrasonic velocity measurements respectively. The measured P- and S-wave velocities and the estimated elastic parameters of Gondwana shale samples show an increase in magnitude with depth indicating the effect of hardness and compaction. The effect of hardness on velocity and elastic parameter is also supported by the increase in quartz percentage in shale with depth. An empirical relationship between P- and S-wave velocity is proposed for Gondwana shale. The XRD experiments reveal the dominance of clay minerals over non-clay minerals in the samples lower the shear strength of South- Karanpura field, at shallow depth, supported by measured elastic properties. The presence of flaky clay texture/topography and abundant micro (>0.75 µm) and nano (<0.75 µm) pores of various shapes in the samples with organic matter in the SEM images suggests that formations are of high shale gas prospecting zones.

Keywords


Gondwana Shale, SEM, Shale Gas, Ultrasonic, XRD.

References





DOI: https://doi.org/10.18520/cs%2Fv115%2Fi4%2F710-720