Open Access Open Access  Restricted Access Subscription Access

Bioactive Metabolite Profiling for Identification of Elite Germplasms:A Conservation Strategy for Threatened Medicinal Plants


Affiliations
1 TransDisciplinary University, Foundation for Revitalisation of Local Health Traditions, 74/2, Jarakabhande Kaval, Attur Post, via Yelahanka, Bengaluru 560 106, India
2 G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora 263 643, India
 

Medicinal plants are used as a source of raw drugs, chemical compounds or bioactive metabolites. Many of the medicinal plant species are facing threat of extinction due to indiscriminate harvesting by humans. Conservation of such species is no longer an altruistic choice but a necessity to ensure sustainable supply of bioactive compounds to the drug industry. This article demonstrates that conservation of threatened species is possible through large-scale cultivation of elite germplasm identified using biochemical markers. Six species, viz. Aconitum balfourii Stapf, Aconitum heterophyllum Wall. ex Royle, Podophyllum hexandrum Royle (syn = Sinopodophyllum hexandrum (Royle) T. S. Ying), Picrorhiza kurroa Royle ex Berth., Berberis aristata DC. and Embelia ribes Burm. f. were selected for the study under the all-India coordinated project on threatened species. The approach proved to be effective for bringing back the species from the verge of extinction.

Keywords

Bioactive Metabolites, Conservation Strategy, Medicinal Plants, Elite Germplasm.
User
Notifications
Font Size

  • Collin, H. A., Secondary metabolite formulations in plant tissue cultures. Plant Growth Regul., 2001, 34, 119–134.
  • Sarup, P., Bala, S. and Kamboj, S., Pharmacology and phytochemistry of oleo-gum resin of Commiphora wightii (Guggulu). Scientifica, 2015, 2015, 138039.
  • Nadeem, M., Palni, L. M. S., Kumar, A. and Nandi, S. K., Podophyllotoxin content, above- and below-ground biomass in relation to altitude in Podophyllum hexandrum populations from Kumaun region of the Indian central Himalaya. Planta Med., 2007, 73, 388–391.
  • Pandey, H., Nandi, S. K., Kumar, A., Agnihotri, R. K. and Palni, L. M. S., Aconitine alkaloids from tubers of Aconitum heterophyllum and A. balfourii: critically endangered medicinal herbs of Indian Central Himalaya. Natl. Acad. Sci. Lett., 2008, 31, 89–93.
  • Pandey, H., Nandi, S. K. and Palni, L. M. S., Podophyllotoxin content in leaves and stem of Podophyllum hexandrum Royle from Indian Himalayan region. J. Med. Plants Res., 2013, 7, 3237–3241.
  • Pandey, H., Kumar, A., Palni, L. M. S. and Nandi, S. K., Podophyllotoxin content in rhizome and ischolar_main samples of Podophyllum hexandrum Royle populations from Indian Himalayan region. J. Med. Plants Res., 2015, 9, 320–325.
  • Naik, P. K., Alam, M. A., Singh, H., Goyal, V., Parida, S., Kalia, S. and Mohapatra, T., Assessment of genetic diversity through RAPD, ISSR and AFLP markers in Podophyllum hexandrum: a medicinal herb from the north-western Himalayan region. Physiol. Mol. Biol. Plant, 2010, 16, 135–148.
  • Tiwari, S. S., Pandey, M. M., Srivastava, S. and Rawat, A. K. S., TLC densitometric quantifiation of picrosides (picroside-I and picrosideII) in Picrorhiza kurrooa and its substitute Picrorhiza scrophulariiflra and their antioxidant studies. Biomed. Chromatogr., 2012, 26, 61–68.
  • Kuruvilla, G. R., Neeraja, M., Srikrishna, A., Rao, G. S. R. S., Sudhakar, A. V. S. and Venkatasubramanian, P., A new quinone from Maesa indica (Roxb.) A.DC, (Myrsinaceae). Indian J. Chem., 2010, 49B, 1637–1641.
  • Venkatasubramanian, P., Kumar, S. K. and Nair, V. S., Cyperus rotundus, a substitute for Aconitum heterophyllum: studies on the ayurvedic concept of Abhava Pratinidhi Dravya (drug substitution). J. Ayurveda Integr. Med., 2010, 1(1), 33–39.
  • Ajikumar, P. K., Tyo, K., Carlsen, S., Mucha, O., Phon, T. H. and Stephanopoulos, G., Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol. Pharm., 2008, 5(2), 167–190.
  • Sacchettini, J. C. and Poulter, C. D., Creating isoprenoid diversity. Science, 1997, 277, 1788–1789.
  • Grassmann, J., Terpenoids as plant antioxidants. Vit. Horm., 2005, 72, 505–535.
  • Irchhaiya, R. et al., Metabolites in plants and its classification. World J. Pharm. Pharm. Sci., 2015, 4(1), 287–305.
  • Lu, J. J., Bao, J. L., Chen, X. P., Huang, M. and Wang, Y. T., Alkaloids isolated from natural herbs as the anticancer agents. Evid. Based Complement. Alter. Med., 2012, 2012, 485042.
  • Cordell, G. A., Introduction to Alkaloids. A Biogenetic Approach, Wiley-Interscience, New York, USA, 1981.
  • Hesse, M., Alkaloids – Nature’s Curse or Blessing, Wiley-VCH, Weinheim, 2002.
  • Buckingham, J., Baggaley, K. H., Roberts, A. D. and Szabo L. F., Dictionary of Alkaloids, CRC Press, Florida, USA, 2010.
  • Cheynier, V., Comte, G., Davies, K. M., Lattanzio, V. and Martens, S., Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem., 2013, 72, 1–20.
  • Pandey, K. B. and Rizvi, S. I., Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev., 2009, 2(5), 270–278.
  • Croteau, R., Kutchan, T. M. and Lewis, N. G., Biochemistry and Molecular Biology of Plants, John Wiley and Sons, Oxford, UK, 2000.
  • Buckingham, J. and Munasinghe, V. R. N., Dictionary of Flavonoids, CRC Press, Florida, USA, 2015.
  • Yao, L. H., Jiang, Y. M., Shi, J., Tomás-Barberán, F. A., Datta, N., Singanusong, R. and Chen, S. S., Flavonoids in food and their health benefits. Plant Foods Hum. Nutr., 2004, 59(3), 113–122.
  • Vetter, J., Plant cyanogenic glycosides. Toxicon, 2000, 38(1), 11–36.
  • Sultankhodzhaev, M. N. and Nishnov, A. A., Proposed biogenesis of diterpenoid alkaloid. Chem. Nat. Prod., 1995, 31, 283–298.
  • Srivastava, N., Sharma, V., Kamal, B. and Jadon, S., Aconitum: need for sustainable exploitation (with special reference to Uttarakhand). Int. J. Green Pharm., 2010, 4(4), 220–228.
  • Nagarajan, M., Kuruvilla, G. R., Kumar, K. S. and Venkatasubramanian, P., Pharmacology of Ativisha, Musta and their substitutes. J. Ayurveda Integr. Med., 2015, 6(2), 121–133.
  • Canel, C., Moraes, R. M., Dyan, F. E. and Ferreira, D., Molecules of interest: podophyllotoxin. Phytochemistry, 2000, 54, 115–120.
  • Schacter, L., Etoposide phosphate: what, why, where and how? Sem. Oncol., 1996, 23, 1–7.
  • Van Uden, W., Pras, N., Visser, J. F. and Malingre, T. M., Detection and identification of podophyllotoxin produced by cell cultures derived from Podophyllum hexandrum Royle. Plant Cell Rep., 1989, 8, 165–168.
  • Fay, D. A. and Ziegler, W., Botanical source differentiation of Podophyllum resin by high performance liquid chromatography. J. Liq. Chromatogr., 1985, 8, 1501–1506.
  • Anon., The Ayurvedic Pharmacopoeia of India, Part I, Vol. II, Government of India, Ministry of Health and Family Welfare, Department of Indian Systems of Medicine & Homoeopathy, 1999.
  • Sack, R. B. and Froehlich, J. L., Berberine inhibits intestinal secretory response of Vibrio cholerae and Escherichia coli enterotoxins. Infect. Immunol., 1982, 35(2), 471–475.
  • Kirtikar, K. R. and Basu, B. D., Indian Medicinal Plants, International Book Publications, Dehradun, 1995.
  • Ved, D. K. and Goraya G. S., Demand and Supply of Medicinal Plants, Foundation for Revitalization of Local Health Traditions, Bangalore, 2008.
  • Saied, S., Batool, S. and Naz, S., Phytochemical studies of Berberis aristata. J. Basic Appl. Sci., 2007, 3(1), 1–4.
  • Wongbutdee, J., Physiological effects of berberine. Thai Pharm. Health Sci. J., 2009, 4, 78–83.
  • Affuso, F., Ruvolo, A., Micillo, F., Saccà, L. and Fazio, S., Effects of a nutraceutical combination (berberine, red yeast rice and policosanols) on lipid levels and endothelial function randomized, double-blind, placebo-controlled study. Nutr. Metab. Cardiovasc. Dis., 2010, 20(9), 656–661.
  • Mhaskar, M., Joshi, S., Chavan, B., Joglekar, A., Barve, N. and Patwardhan, A., Status of Embelia ribes Burm f. (Vidanga), an important medicinal species of commerce from northern Western Ghats of India. Curr. Sci., 2011, 100(4), 547–525.
  • Souravi, K. and Rajasekharan, P. E., A review on the pharmacology of Embelia ribes Burm. F. – a threatened medicinal plant. Int. J. Pharm. Biol. Sci., 2014, 5(2), 443–456.
  • Purohit, A. N., Lata, H., Nautiyal, S and Purohit, M. C., Some characteristics of four morphological variants of Podophyllum hexandrum Royle. Plant Genet. Res. Newsl., 1998, 114, 51–52.
  • Sharma, T. R., Singh, B. M., Sharma, N. R. and Chauhan, R. S., Identification of high podophyllotoxin producing biotypes of Podophyllum hexandrum Royle from North-Western Himalaya. J. Plant Biochem. Biotechnol., 2000, 9, 49–51.
  • Kitchlu, S., Ram, G., Koul, S., Koul, K., Gupta, K. K. and Ahuja, A., Podophyllum lignans array of Podophyllum hexandrum Royle population from semi-desert alpine region of Zanskar valley in Himalayas. Ind. Crops Prod., 2011, 33, 584–587.
  • Pandey, H., Nandi, S. K., Kumar, A., Palni, U. T. and Palni, L. M. S., Podophyllotoxin content in Podophyllum hexandrum Royle plants of known age of seed origin and grown at a lower altitude. Acta. Physiol. Plant, 2007, 29, 121–126.
  • Bastos, J. K., Burandt, Jr, Nanayakkara, L. and Bryanat Mechesney, J. D., Quantification of aryltetralin lignans in plants parts and among different populations of Podophyllum peltatum by reverse phase high performance liquid chromatography. J. Nat. Prod., 1996, 59, 406–408.
  • Moraes, R. M., Momm, H. G., Silva, B., Maddox, V., Easson, G. L., Lata, H. and Ferreira, D., Geographic information system method for assessing chemo-diversity in medicinal plants. Planta Med., 2005, 71, 1157–1164.
  • Purohit, H., Nautiyal, B. P. and Nautiyal, M. C., Interpopulation variation in Picrorhiza kurrooa Royle ex Benth – step towards identifying genetic variability and elite strains for crop improvement study. Am. J. Plant Physiol., 2008, 3, 154–164.
  • Sharma, N., Pathania, V., Singh, B. and Gupta, R. C., Intraspecific variability of main phytochemical compounds in Picrorhiza kurrooa Royle ex Benth. from north Indian higher altitude Himalayas using reverse-phase high performance liquid chromatography. J. Med. Plants Res., 2012, 6, 3181–3187.
  • Sarin, Y. K., Illustrated Manual of Herbal Drugs used in Ayurveda (CSIR/ICMR), NISCOM, New Delhi, 1996.
  • Anon., The Ayurvedic Formulary of India, Part I, Government of India, Ministry of Health and Family Welfare, Department of Indian Systems of Medicine and Homoeopathy, New Delhi, 2003.
  • Choudhury, R. P., Md. Ibrahim, A. and Bharathi, Padma, V., Quantitative analysis of embelin in Myrsine africana L. (Myrsinaceae) using HPLC and HPTLC. E-J. Food Plants Chem., 2007, 2, 20–24.
  • Fowler, M. W., Problems in commercial exploitation of plant tissue cultures. In Primary and Secondary Metabolism of Plant Cell Cultures (eds Neumann, K. H., Barz, W. and Reinhardt, E.), Springer Verlag, Berlin, Germany, 1985, pp. 362–378.
  • Hussain, M. S., Fareed, S., Ansari, S., Rahman, M. A., Ahmad, I. Z. and Saeed, M., Current approaches toward production of secondary plant metabolites. J. Pharm. Bioallied Sci., 2012, 4(1), 10–20.
  • Caruso, M. et al., Studies on a strain of Kitasatospora sp. paclitaxel producer. Ann. Microbiol., 2000, 50(2), 89–102.
  • Golinska, P., Wypij, M., Agarkar, G., Rathod, D., Dahm, H. and Rai, M., Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek, 2015, 108(2), 267–289.
  • Moraes, R. M., Burandt, C. L., Ganzera, M., Li, X., Khan, I. A. and Canel, C., The American May apple revisited – Podophyllum peltatum – still a potential cash crop? Econ. Bot., 2000, 54, 471–476.
  • Moraes, R. M., Bedir, E., Burandt, C., Canel, C. and Khan, I. A., Evaluation of Podophyllum peltatum accessions for podophyllotoxin production. Planta Med., 2002, 68, 341–344.
  • Zheljazkov, V. D., Cantrell, C. L. and Astatkie, T., Variation in podophyllotoxin concentration in leaves and rhizomes of American mayapple (Podophyllum peltatum L.). Ind. Crops Prod., 2011, 33, 633–637.

Abstract Views: 270

PDF Views: 72




  • Bioactive Metabolite Profiling for Identification of Elite Germplasms:A Conservation Strategy for Threatened Medicinal Plants

Abstract Views: 270  |  PDF Views: 72

Authors

Padma Venkatasubramanian
TransDisciplinary University, Foundation for Revitalisation of Local Health Traditions, 74/2, Jarakabhande Kaval, Attur Post, via Yelahanka, Bengaluru 560 106, India
S. P. Balasubramani
TransDisciplinary University, Foundation for Revitalisation of Local Health Traditions, 74/2, Jarakabhande Kaval, Attur Post, via Yelahanka, Bengaluru 560 106, India
S. K. Nandi
G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora 263 643, India
Mohd Tariq
G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora 263 643, India

Abstract


Medicinal plants are used as a source of raw drugs, chemical compounds or bioactive metabolites. Many of the medicinal plant species are facing threat of extinction due to indiscriminate harvesting by humans. Conservation of such species is no longer an altruistic choice but a necessity to ensure sustainable supply of bioactive compounds to the drug industry. This article demonstrates that conservation of threatened species is possible through large-scale cultivation of elite germplasm identified using biochemical markers. Six species, viz. Aconitum balfourii Stapf, Aconitum heterophyllum Wall. ex Royle, Podophyllum hexandrum Royle (syn = Sinopodophyllum hexandrum (Royle) T. S. Ying), Picrorhiza kurroa Royle ex Berth., Berberis aristata DC. and Embelia ribes Burm. f. were selected for the study under the all-India coordinated project on threatened species. The approach proved to be effective for bringing back the species from the verge of extinction.

Keywords


Bioactive Metabolites, Conservation Strategy, Medicinal Plants, Elite Germplasm.

References





DOI: https://doi.org/10.18520/cs%2Fv114%2Fi03%2F554-561