Open Access Open Access  Restricted Access Subscription Access

Investigation of the Stability of Oxadiasole and Their Analogs Using Quantum Mechanics Computation


Affiliations
1 Department of Chemistry, Islamic Azad University, Arak Branch, Arak, Iran, Islamic Republic of
 

This study aimed at investigating factors affecting the stability as well as structural properties of different Oxadiasole and Thiadiasole isomers based on theoretical level B3LYP/6-311+G**, Nuclear Magnetic Resonance (NMR), and Nucleus-independent Chemical Shift (NICS). Qualitative relationships between relative stabilities of 1,2,3-Oxadiazole, 1,2,4-Oxadiazole, 1,2,5-Oxadiazole and 1,3,4-Oxadiazole were obtained. Aromatic stabilization energy (ASE), aromatic ring current (NICS), HUMO-LUMO gaps, electro-negativity (X), hardness (η), softness (S), electro-philicity (ω) and structural parameters were also calculated in the same theoretical level. The results show that 1,3,4- Oxadiazole is more stable than 1,2,3-Oxadiazole, 1,2,4-Oxadiazole and 1,2,5-Oxadiazole. Unlike the trends observed in Oxadiazoles, 1,2,5-Thiadiazole isomer is more stable than other corresponding Isomers.

Keywords

Oxadiazole, DFT, Ab Initio, NMR.
User
Notifications
Font Size

Abstract Views: 82

PDF Views: 0




  • Investigation of the Stability of Oxadiasole and Their Analogs Using Quantum Mechanics Computation

Abstract Views: 82  |  PDF Views: 0

Authors

Masoud Karimi
Department of Chemistry, Islamic Azad University, Arak Branch, Arak, Iran, Islamic Republic of

Abstract


This study aimed at investigating factors affecting the stability as well as structural properties of different Oxadiasole and Thiadiasole isomers based on theoretical level B3LYP/6-311+G**, Nuclear Magnetic Resonance (NMR), and Nucleus-independent Chemical Shift (NICS). Qualitative relationships between relative stabilities of 1,2,3-Oxadiazole, 1,2,4-Oxadiazole, 1,2,5-Oxadiazole and 1,3,4-Oxadiazole were obtained. Aromatic stabilization energy (ASE), aromatic ring current (NICS), HUMO-LUMO gaps, electro-negativity (X), hardness (η), softness (S), electro-philicity (ω) and structural parameters were also calculated in the same theoretical level. The results show that 1,3,4- Oxadiazole is more stable than 1,2,3-Oxadiazole, 1,2,4-Oxadiazole and 1,2,5-Oxadiazole. Unlike the trends observed in Oxadiazoles, 1,2,5-Thiadiazole isomer is more stable than other corresponding Isomers.

Keywords


Oxadiazole, DFT, Ab Initio, NMR.