Open Access Open Access  Restricted Access Subscription Access

RNA Interference Mediated Interleukin-1β Silencing in Inflamed Chondrocytes Decreases Target and Downstream Catabolic Responses


Affiliations
1 Department of Clinical Sciences, Cornell University, Ithaca, NY 14853, United States
 

Posttraumatic activation of the catabolic cascade plays a major role in degradation of cartilage. Interleukin-1β (IL-1β), a primary instigator in the catabolic axis, is upregulated in chondrocytes following injury. IL-1β activates key degradative enzymes, including MMPs and aggrecanases, and other proinflammatory mediators such as PGE2 which contribute to ECM breakdown. Posttranscriptional silencing of IL-1β by RNA interference (RNAi) may drive a reduction in IL-1β. We hypothesized that transduction of chondrocytes using rAAV2 expressing a short hairpin RNAi motif targeting IL-1β (shIL-1β) would significantly decrease IL-1β expression and, in turn, decrease expression of other catabolic enzymes. Chondrocyte cultures were transduced with rAAV2-tdT-shIL-1β in serum-free media. The fluorescent protein, tdTomato, was used to determine transduction efficiency via flow cytometry and fluorescent microscopy. Cells were stimulated with lipopolysaccharide (LPS) 48 hours following transduction. After 24-hour stimulation, supernatants were collected for cytokine analysis, and cells lysed for gene expression analysis. IL- 1β knockdown led to significantly decreased expression of IL-1β, TNF-α, and ADAMTS5. PGE2 synthesis was also significantly downregulated. Overall, effective silencing of IL-1β using rAAV2 vector expressing a short hairpin IL-1β knockdown sequence was shown. Additionally, significant downstream effects were evident, including decreased expression of TNF-α and ADAMTS5. Targeted silencing of catabolic cytokines may provide a promising treatment avenue for osteoarthritic (OA) joints.
User
Notifications
Font Size

Abstract Views: 79

PDF Views: 6




  • RNA Interference Mediated Interleukin-1β Silencing in Inflamed Chondrocytes Decreases Target and Downstream Catabolic Responses

Abstract Views: 79  |  PDF Views: 6

Authors

Kyla F. Ortved
Department of Clinical Sciences, Cornell University, Ithaca, NY 14853, United States
Bethany S. Austin
Department of Clinical Sciences, Cornell University, Ithaca, NY 14853, United States
Michael S. Scimeca
Department of Clinical Sciences, Cornell University, Ithaca, NY 14853, United States
Alan J. Nixon
Department of Clinical Sciences, Cornell University, Ithaca, NY 14853, United States

Abstract


Posttraumatic activation of the catabolic cascade plays a major role in degradation of cartilage. Interleukin-1β (IL-1β), a primary instigator in the catabolic axis, is upregulated in chondrocytes following injury. IL-1β activates key degradative enzymes, including MMPs and aggrecanases, and other proinflammatory mediators such as PGE2 which contribute to ECM breakdown. Posttranscriptional silencing of IL-1β by RNA interference (RNAi) may drive a reduction in IL-1β. We hypothesized that transduction of chondrocytes using rAAV2 expressing a short hairpin RNAi motif targeting IL-1β (shIL-1β) would significantly decrease IL-1β expression and, in turn, decrease expression of other catabolic enzymes. Chondrocyte cultures were transduced with rAAV2-tdT-shIL-1β in serum-free media. The fluorescent protein, tdTomato, was used to determine transduction efficiency via flow cytometry and fluorescent microscopy. Cells were stimulated with lipopolysaccharide (LPS) 48 hours following transduction. After 24-hour stimulation, supernatants were collected for cytokine analysis, and cells lysed for gene expression analysis. IL- 1β knockdown led to significantly decreased expression of IL-1β, TNF-α, and ADAMTS5. PGE2 synthesis was also significantly downregulated. Overall, effective silencing of IL-1β using rAAV2 vector expressing a short hairpin IL-1β knockdown sequence was shown. Additionally, significant downstream effects were evident, including decreased expression of TNF-α and ADAMTS5. Targeted silencing of catabolic cytokines may provide a promising treatment avenue for osteoarthritic (OA) joints.