Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Plazomicin:A Step Toward Next Generation Aminoglycosides. Review


Affiliations
1 Surgycare Lifescience, Sendhwa (MP), India
     

   Subscribe/Renew Journal


Aminoglycosides are selectively active against gram negative bacteria through inhibition of protein synthesis; moreover, those are given parenterally or topically because they are poorly absorbed from the gastrointestinal tract, therefore are given parenterally or topically. Nephrotoxicity and ototoxicity are the most common side effects associated with aminoglycosides therapy. As the resistance developed in most of the bacteria that open the door to use either most toxic combination therapy of present aminoglycosides with other antibiotics such as beta lactams or vancomycin with which they exert a synergistic effect or to discover next generation aminoglycosides, without toxicities. For the discovery of next generation aminoglycosides, a successful step passes through identification of one structure with molecular formula C25H48N6O10 and 592.68 molecular wight from 490 analogous of sisomicin with absence of 3’-OH and 4’-OH groups and named as “ACHN-490” or “Plazomicin” by Achaogen. Plazomicin showed activity against Enterobacteriaceae (EC), Multi drug resistant Enterobacteriaceae (MDR-EC), Aminoglycoside resistant Enterobacteriaceae (AR-EC), Carbapenem resistant Enterobacteriaceae (CR-EC), Colistin resistant (CR-CRE), Tigecycline resistant (TR-EC). Lack of nephrotoxicity or ototoxicity associated with plazomicin; make it drug of future in next generation aminoglycosides. In this review, I am trying to underlying discovery and development of plazomicin as newer antibiotic.

Keywords

Next Generation Aminoglycoside, Plazomicin, ACGN-490, Multi-Drug Resistant Enterobacteriaceae, Aminoglycoside Resistance, Aminoglycoside Combination Therapy.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Baylis, C.L., Penn, C.W., Thielman, N. M. et al. (2006). Escherichia coli and Shigella spp. In Principles and Practice of Clinical Bacteriology. In P. M. Gillespie, S.H. and Hawkey (Ed.) (2nd ed., pp. 347–365). John Wiley and Sons Ltd., London.
  • Cowan, S. T. (1956). Taxonomic rank of Enterobacteriaceae groups. Journal of General Microbiology, 15(2): 345–58. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/13376877.
  • Pitout, J. D., and Laupland, K. B. (2008). Extended-spectrum ??-lactamase-producing enterobacteriaceae: an emerging publichealth concern. The Lancet Infectious Diseases, 8(3): 159–166. https://doi.org/10.1016/S1473-099(08)70041-0.
  • Aminov, R. I. (2010). A brief history of the antibiotic era: Lessons learned and challenges for the future. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2010.00134.
  • Katzung, B. G., Trevor, A. J., and Masters, S. B. (2009). Basic and Clinical Pharmacology. (C. Katzung, Bertram G.Stamford, Ed.) (7th ed.). McGraw-Hill. https://doi.org/10.1017/CBO9781107415324.004.
  • Siegenthaler, W., Bonetti, A., and Luthy, R. (1986). Aminoglycoside Antibiotics in Infectious Diseases. The American Journal of Medicine, 80(6): 2-14.
  • Lewis K.(2013). Platforms for antibiotic discovery. Nat Rev Drug Discov. 12(5):371-387. doi:10.1038/nrd3975.
  • Devasahayam, G., Scheld, W. M., and Hoffman, P. S. (2011). Newer Antibacterial Drugs for a New Century. Expert Opinion of Investigative Drugs, 19(2): 215–234. https://doi.org/10.1517/13543780903505092.
  • Shi, K., Caldwell, S. J., Fong, D. H., and Berghuis, A. M. (2013). Prospects for circumventing aminoglycoside kinase mediated antibiotic resistance. Frontiers in Cellular and Infection Microbiology, 3(June): 1-17. https://doi.org/10.3389/fcimb.2013.00022.
  • Cunha, B. a. (1988). Aminoglycosides: current role in antimicrobial therapy. Pharmacotherapy, 8(6): 334–50. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3146747.
  • Molina, J., Cordero, E., Palomino, J., and Pachón, J. (2009). [Aminoglycosides and polymyxins]. Enfermedades Infecciosas Y Microbiología Clinica, 27(3): 178–88. https://doi.org/10.1016/j.eimc.2009.02.001.
  • Hira SK, Attili VR, Kamanga J, Mkandawire O, Patel JS, P. M. (1985). Efficacy of gentamicin and kanamycin in the treatment of uncomplicated gonococcl urethritis in Zambia. Sex Transm Dis, 1(12): 52–54.
  • Yoon JY, Kim YT, K. J. (1988). Treatment of uncomplicated male gonococcal urethritis: kanamycin versus. gentamicin. Korean J Dermatol, 26(2): 184–188.
  • Pareek SS, C. M. (1981). Comparative study between gentamicin and spectinomycin in the treatment of infections to penicillin-resistant gonococci. Curr Ther Res, 30(2):177–180.
  • Iskandar IO, Nahuib F, G. L. EL. (1978). A comparative study of gentamicin, co-trimoxazole and trimethoprim-sulphametrol in acute gonococcal urethritis. J Egypt Med Assoc, 10(61): 489– 495.
  • Lule G, Behets FM, Hoffman IF, Dallabetta G, Hamilton HA, Moeng S, Liomba G, C. M. (1994). STD/HIV control in Malawi and the search for affordable and effective urethritis therapy: a first field evaluation. Genitourin Med, 70(6): 384–388.
  • Abbruzzese, J. L., Rocco, L. E., Laskin, O. L., Skubitz, K. M., McGaughey, M. D., and Lipsky, J. J. (1983). Prospective randomized double-blind comparison of moxalactam and tobramycin in treatment of urinary tract infections. The American Journal of Medicine, 74(4): 694–699.
  • Barza M, Ioannidis JP, Cappelleri JC, Lau J. (1996). Single or multiple daily doses of aminoglycosides: a meta-analysis. BMJ (Clinical research ed.).312(7027):338-345. doi:10.1136/bmj.313.7055.490.
  • Farzal, Z., Kou, Y.-F., St. John, R., Shah, G. B., and Mitchell, R. B. (2015). The role of routine hearing screening in children with cystic fibrosis on aminoglycosides: A systematic review. The Laryngoscope, 126(January): 228–235. https://doi.org/10.1002/lary.25409.
  • Magiorakos, A., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., et al. (2011). Bacteria : an International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Microbiology, 18(3): 268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x.
  • Tolmasky, M. S. R. and M. E. (2010). Aminoglycoside Modifying Enzymes. Drug Resist Updat. 13(6): 151-171.
  • Shaw, K. J., Rather, P. N., Hare, R. S., and Miller, G. H. (1993). Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiological Reviews, 57(1): 138–163.ttps://doi.org/10.1016/j.abb.2004.09.003
  • Gerber AU, Vastola AP, Brandel J, C. W. (1982). Selection of aminoglycoside- resistant variants of Pseudomonas aeruginosa in an in vivo model. J Infect Dis, 146(5): 691–697. https://doi.org/https://doi.org/10.1093/infdis/146.5.691
  • Michea-Hamzehpour M, Pechere JC, Marchou B, A. R. (1986). Combination therapy: a way to limit emergence of resistance? Am J Med, 80(6B): 138–142.
  • Bliziotis, I. a, Samonis, G., Vardakas, K. Z., Chrysanthopoulou, S., and Falagas, M. E. (2005). Effect of aminoglycoside and betalactam combination therapy versus beta-lactam monotherapy on the emergence of antimicrobial resistance: a meta-analysis of randomized, controlled trials. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 41(2): 149–158. https://doi.org/10.1086/430912.
  • Kahlmeter G, D. J. (1984). Aminoglycoside toxicity - a review of clinical studies published between 1975 and 1982. The Journal of Antimicrobial Chemotherapy, 13 (Suppl A): 9–22.
  • Kim Ming Wong, Chan YH, C. C. (2001). Cefepime versus vancomycin plus netilmicin therapy for continuous ambulatory peritoneal dialysis associated peritonitis. Am J Kidney Dis, 38(1): 127–131.
  • Vidal, L., Gafter-Gvili, A., Borok, S., Fraser, A., Leibovici, L., and Paul, M. (2007). Efficacy and safety of aminoglycoside monotherapy: Systematic review and meta-analysis of randomized controlled trials. Journal of Antimicrobial Chemotherapy, 60(2): 247–257. https://doi.org/10.1093/jac/dkm193.
  • Abrams B, Sklaver A, Hoffman T, G. R. (1979). Single or combination therapy of staphylococcal endocarditis in intravenous drug abusers. Ann Intern Med, 5(90): 789-91.
  • Noone, P. (1984). Sisomicin, Netilmicin and Dibekacin: A Review of their Antibacterial Activity and Therapeutic Use. Drugs, 27(6): 548–578. https://doi.org/10.2165/00003495-198427060-00003.
  • Scheetz, M. H., Hurt, K. M., Noskin, G. A., and Oliphant, C. M. (2006). Applying antimicrobial pharmacodynamics to resistant gram-negative pathogens. American Journal of Health-System Pharmacy, 63(14): 1346–1360. https://doi.org/10.2146/ajhp050403.
  • S, A. E., and Miller, G. H. (2010). Combating evolution with intelligent design: the neoglycoside ACHN-490. Current Opinion in Microbiology, 13(5): 565–573. https://doi.org/10.1016/j.mib.2010.09.004.
  • Galani, I. (2016). Plazomicin. Drugs of the Future, 39(1): 25–35. https://doi.org/10.1358/dof.2014.39.1.2095267
  • Endimiani, A., Hujer, K. M., Hujer, A. M., Armstrong, E. S., Choudhary, Y., Aggen, J. B., et al. (2009). ACHN-490, a neoglycoside with potent in vitro activity against multidrug-resistant Klebsiella pneumoniae isolates. Antimicrobial Agents and Chemotherapy, 53(10): 4504–4507. https://doi.org/10.1128/AAC.00556-09.
  • Aggen, J. B., Armstrong, E. S., Goldblum, A. A., Dozzo, P., Linsell, M. S., Gliedt, M. J., et al. (2010). Synthesis and spectrum of the neoglycoside ACHN-490.Antimicrobial Agents and Chemotherapy, 54(11): 4636–4642. https://doi.org/10.1128/AAC.00572-10.
  • Bushb MJP and K. Investigational Antimicrobial Agents of 2013. Clin Microbiol Rev. 2013;26(4):792-821.
  • James B. Aggen, Eliana S. Armstrong, Adam A. Goldblum, Paola Dozzo, Martin S. Linsell, Micah J. Gliedt, Darin J. Hildebrandt, Lee Ann Feeney, Aya Kubo, Rowena D. Matias, Sara Lopez, Marcela Gomez, Kenneth B. Wlasichuk, Raymond Diokno GHM and HEM. Synthesis and Spectrum of the Neoglycoside ACHN-490. Antimicrob Agents Chemother. 2010;54(11):4636-4642. doi:10.1128/AAC.00572-10.
  • Galani I, Souli M, Daikos GL, et al. Activity of plazomicin (ACHN-490) against MDR clinical isolates of Klebsiella pneumoniae, Escherichia coli, and Enterobacter spp. from Athens, Greece. J Chemother. 2012;24(4):191-194. doi:10.1179/1973947812Y.0000000015.
  • D. M. Livermore, S. Mushtaq, M. Warner, J.-C. Zhang, S. Maharjan, M. Doumith NW. Activity of aminoglycosides, including ACHN-490, against carbapenem-resistant Enterobacteriaceae isolates. J Antimicrob Chemother. 2011;66(1):48-53. doi:10.1093/jac/dkq408.
  • Landman, D. Antimicrobial activity of a novel aminoglycoside, ACHN-490, against Acinetobacter baumannii and Pseudomonas aeruginosa from New York City. J Antimicrob Chemother. 2011;66(2):332-334. doi:https://doi.org/10.1093/jac/dkq459.
  • Garcia-Salguero C, Rodriguez-Avial I, Picazo JJ, Culebras E. Can plazomicin alone or in combination be a therapeutic option against carbapenem-resistant Acinetobacter baumannii? Antimicrob Agents Chemother. 2015;59(10):5959-5966. doi:10.1128/AAC.00873-15.
  • Tenover FC, Tickler I, Armstrong ES, et al. Activity of ACHN490 against meticillin-resistant Staphylococcus aureus (MRSA) isolates from patients in US hospitals. Int J Antimicrob Agents. 2011;38(4):352-354. doi:10.1016/j.ijantimicag.2011.05.016.
  • Karaiskos I, Souli M, Giamarellou H. Plazomicin: an investigational therapy for the treatment of urinary tract infections. Expert Opin Investig Drugs. 2015;24(11):1501-1511. doi:10.1517/13543784.2015.1095180.
  • Noe Reyes JBA and CFK. In Vivo Efficacy of the Novel Aminoglycoside ACHN-490 in Murine Infection Models. Antimicrob Agents Chemother. 2011;55(4):1728-1733.
  • Lin G1, Ednie LM AP. Antistaphylococcal activity of ACHN490 tested alone and in combination with other agents by time-kill assay. Antimicrob Agents Chemother. 2010;54(5):2258-2261.
  • Cass RT1, Brooks CD, Havrilla NA, Tack KJ, Borin MT, Young D BJ. Pharmacokinetics and safety of single and multiple doses of ACHN-490 injection administered intravenously in healthy subjects. Antimicrob Agents Chemother. 2011;55(12):5874-5880.

Abstract Views: 7

PDF Views: 0




  • Plazomicin:A Step Toward Next Generation Aminoglycosides. Review

Abstract Views: 7  |  PDF Views: 0

Authors

Akhilesh Gupta
Surgycare Lifescience, Sendhwa (MP), India

Abstract


Aminoglycosides are selectively active against gram negative bacteria through inhibition of protein synthesis; moreover, those are given parenterally or topically because they are poorly absorbed from the gastrointestinal tract, therefore are given parenterally or topically. Nephrotoxicity and ototoxicity are the most common side effects associated with aminoglycosides therapy. As the resistance developed in most of the bacteria that open the door to use either most toxic combination therapy of present aminoglycosides with other antibiotics such as beta lactams or vancomycin with which they exert a synergistic effect or to discover next generation aminoglycosides, without toxicities. For the discovery of next generation aminoglycosides, a successful step passes through identification of one structure with molecular formula C25H48N6O10 and 592.68 molecular wight from 490 analogous of sisomicin with absence of 3’-OH and 4’-OH groups and named as “ACHN-490” or “Plazomicin” by Achaogen. Plazomicin showed activity against Enterobacteriaceae (EC), Multi drug resistant Enterobacteriaceae (MDR-EC), Aminoglycoside resistant Enterobacteriaceae (AR-EC), Carbapenem resistant Enterobacteriaceae (CR-EC), Colistin resistant (CR-CRE), Tigecycline resistant (TR-EC). Lack of nephrotoxicity or ototoxicity associated with plazomicin; make it drug of future in next generation aminoglycosides. In this review, I am trying to underlying discovery and development of plazomicin as newer antibiotic.

Keywords


Next Generation Aminoglycoside, Plazomicin, ACGN-490, Multi-Drug Resistant Enterobacteriaceae, Aminoglycoside Resistance, Aminoglycoside Combination Therapy.

References