The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off

Data stream mining techniques are able to classify evolving data streams such as network traffic in the presence of concept drift. In order to classify high bandwidth network traffic in real-time, data stream mining classifiers need to be implemented on reconfigurable high throughput platform, such as Field Programmable Gate Array (FPGA). This paper proposes an algorithm for online network traffic classification based on the concept of incremental k-means clustering to continuously learn from both labeled and unlabeled flow instances. Two distance measures for incremental k-means (Euclidean andManhattan) distance are analyzed to measure their impact on the network traffic classification in the presence of concept drift. The experimental results on real datasets show that the proposed algorithm exhibits consistency, up to 94% average accuracy for both distance measures, even in the presence of concept drifts. The proposed incremental k-means classification using Manhattan distance can classify network traffic 3 times faster than Euclidean distance at 671 thousands flow instances per second.
Font Size